首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对大光斑激光雷达回波信号噪声影响森林冠顶高估测精度,且回波分析法判定回波位置受限于平坦地区的问题,利用高斯低通滤波和小波去噪两种方法对GLAS波形进行去噪处理,提出了结合均方根倍差法和回波分析法来判定回波位置的有效算法。经小波去噪后信号的信噪比23.360 704,均方根误差为0.000 233 3,经均方根倍差法和回波分析法相结合来判定回波位置估测的冠顶高结果与实测结果相关性系数r值为0.864,效果均优于高斯低通滤波去噪。基于GLAS回波数据实验结果表明:小波去噪较好地实现了对回波信号的去噪处理,均方根倍差法和回波分析法相结合,实现了对坡度相对较大地区的GLAS波形的回波开始位置和地面回波位置的准确判定,对森林冠顶高的精确估算具有重要意义。  相似文献   

2.
3.
The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area.  相似文献   

4.
王乐洋  李志强 《测绘工程》2021,30(1):6-13,19
针对线性最小二乘法处理非线性模型产生模型误差的问题,文章将高斯牛顿迭代法引入测角网坐标平差模型中,给出测角网坐标平差模型的高斯牛顿迭代法计算过程.考虑到非线性平差模型的参数估计值是有偏估计,结合Bootstrap重采样方法对参数估值进行改善,提出测角网坐标平差模型的Bootstrap参数估计方法,并给出详细的迭代流程图.针对等精度与不等精度角度观测数据,设计两个测角网案例.实验结果表明,测角网坐标平差模型的高斯牛顿迭代解法能够削弱线性近似带来的模型误差影响,其参数估值优于传统的线性近似方法;而测角网坐标平差模型的Bootstrap参数估计方法比高斯牛顿迭代解法在提高测角网坐标平差参数估值质量方面更加有效.实验证明将高斯牛顿迭代解法应用于测角网坐标平差模型的必要性与实用性,也证明将Bootstrap重采样参数估计方法与高斯牛顿迭代解法结合并用于测角网坐标平差的可行性与有效性.  相似文献   

5.
针对现代高精度测量工作中传统的群体智能算法存在的不足,该文提出将猫群算法应用于非线性模型参数估计,从观察模式和捕猎模式两个方面论述了猫群优化算法的基本原理、解算步骤等;最后通过实例分析验证了猫群优化算法在非线性模型参数估计中应用的可行性和优势。  相似文献   

6.
This letter introduces the /spl epsiv/-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available.  相似文献   

7.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

8.
Within the last few decades mangrove forests worldwide have been experiencing high annual rates of loss and many of those that remain have undergone considerable degradation. To understand the condition of these forests, various optical remote sensing platforms have been used to map and monitor these wetlands, including the use of these data for biophysical parameter mapping. For many mangrove forests a reliable source of optical imagery is not possible given their location in quasi-permanent cloud cover or smoke covered regions. In such cases it is recommended that Synthetic Aperture Radar (SAR) be considered. The purpose of this investigation was to examine the relationships between various ALOS-PALSAR modes, acquired from eight images, and mangrove biophysical parameter data collected from a black mangrove (Avicennia germinans) dominated forest that has experienced considerable degradation. In total, structural data were collected from 61 plots representing the four common stand types found in this degraded forest of the Mexican Pacific: tall healthy mangrove (n = 17), dwarf healthy mangrove (n = 15), poor condition mangrove (n = 13), and predominantly dead mangrove (n = 16).Based on backscatter coefficients, significant negative correlation coefficients were observed between filtered single polarization ALOS PALSAR (6.25 m) HH backscatter and Leaf Area Index (LAI). When the dead stands were excluded (n = 45) the strength of these relationships increased. Moreover, significant negative correlation coefficients were observed with stand height, Basal Area (BA) and to a lesser degree with stem density and mean DBH. With the coarser spatial resolution dual-polarization and quad polarization data (12.5 m) only a few, and weaker, correlation coefficients were calculated between the mangrove parameters and the filtered HH backscatter. However, significant negative values were once again calculated for the HH when the 16 dead mangrove stands were removed from the sample. Conversely, strong positive significant correlation coefficients were calculated between the cross-polarization HV backscatter and LAI when the dead mangrove stands were considered. Although fewer in comparison to the HH correlations, a number of VV backscatter based relationships with mangrove parameters were observed from the quad polarization mode and, to a lesser extent, with the one single VV polarization data.In addition to backscatter coefficients, stepwise multiple regression models of the mangrove biophysical parameter data were developed based on texture parameters derived from the grey level co-occurrence matrix (GLCM) of the ALOS data. A similar pattern to the backscatter relationships was observed for models based on the single polarization unfiltered data, with fairly strong coefficients of determination calculated for LAI and stem height when the dead stands were excluded. In contrast, similar coefficients of determination with biophysical parameters were observed for the dual and quad polarization multiple regression models when the dead stands were both included and excluded from the analyses. An estimated mangrove LAI map of the study area, derived from a multiple regression model of the quad polarization texture parameters, showed comparable spatial patterns of degradation to a map derived from higher spatial resolution optical satellite data.  相似文献   

9.
We developed a method to produce a 3-D voxel-based solid model of a tree based on portable scanning lidar data for accurate estimation of the volume of the woody material. First, we obtained lidar measurements with a high laser pulse density from several measurement positions around the target, a Japanese zelkova tree. Next, we converted lidar-derived point-cloud data for the target into voxels. The voxel size was 0.5 cm × 0.5 cm × 0.5 cm. Then, we used differences in the spatial distribution of voxels to separate the stem and large branches (diameter > 1 cm) from small branches (diameter  1 cm). We classified the voxels into sets corresponding to the stem and to each large branch and then interpolated voxels to fill out their surfaces and their interiors. We then merged the stem and large branches with the small branches. The resultant solid model of the entire tree was composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches, and a cloud of voxels equivalent to small branches that were discretely scattered in mainly the upper part of the target. Using this model, we estimated the woody material volume by counting the number of voxels in each part and multiplying the number of voxels by the unit voxel volume (0.13 cm3). The percentage error of the volume of the stem and part of a large branch was 0.5%. The estimation error of a certain part of the small branches was 34.0%.  相似文献   

10.
This paper addresses the problem of speckle noise on single baseline polarimetric SAR interferometry (Pol-InSAR) on the basis of the multiplicative-additive speckle noise model. Considering this speckle noise model, a novel filtering technique is defined and studied in terms of simulated and experimental Pol-InSAR data. As demonstrated, the use of the multiplicative-additive speckle noise model does not lead to a corruption of the useful information but to an improvement of its estimation. The performance of the algorithm is analyzed in terms of the physical parameters retrieved from the filtered data, that in this work correspond to the forest height and the ground phase. In case of experimental data, the retrieved forest height is compared and validated against Lidar ground truth measurements.  相似文献   

11.
The red edge position (REP) in the vegetation spectral reflectance is a surrogate measure of vegetation chlorophyll content, and hence can be used to monitor the health and function of vegetation. The Multi-Spectral Instrument (MSI) aboard the future ESA Sentinel-2 (S-2) satellite will provide the opportunity for estimation of the REP at much higher spatial resolution (20 m) than has been previously possible with spaceborne sensors such as Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT. This study aims to evaluate the potential of S-2 MSI sensor for estimation of canopy chlorophyll content, leaf area index (LAI) and leaf chlorophyll concentration (LCC) using data from multiple field campaigns. Included in the assessed field campaigns are results from SEN3Exp in Barrax, Spain composed of 35 elementary sampling units (ESUs) of LCC and LAI which have been assessed for correlation with simulated MSI data using a CASI airborne imaging spectrometer. Analysis also presents results from SicilyS2EVAL, a campaign consisting of 25 ESUs in Sicily, Italy supported by a simultaneous Specim Aisa-Eagle data acquisition. In addition, these results were compared to outputs from the PROSAIL model for similar values of biophysical variables in the ESUs. The paper in turn assessed the scope of S-2 for retrieval of biophysical variables using these combined datasets through investigating the performance of the relevant Vegetation Indices (VIs) as well as presenting the novel Inverted Red-Edge Chlorophyll Index (IRECI) and Sentinel-2 Red-Edge Position (S2REP). Results indicated significant relationships between both canopy chlorophyll content and LAI for simulated MSI data using IRECI or the Normalised Difference Vegetation Index (NDVI) while S2REP and the MERIS Terrestrial Chlorophyll Index (MTCI) were found to have the strongest correlation for retrieval of LCC.  相似文献   

12.
13.
半参数测量平差模型参数的二阶段估计   总被引:4,自引:2,他引:2  
潘雄  孙海燕 《测绘科学》2004,29(3):19-21
本文首先利用自然样条函数法,找到符合条件的非参数自然插值样条函数。其次利用核函数并综合最小二乘法建立了参数x和S非参数的估计量x、S,讨论了窗宽参数h的选取方法。最后,用一个模拟的平差算例从估值的稳定性、均方差等方面与最小二乘法进行了比较,结果说明,半参数测量模型能更接近于真实情况。  相似文献   

14.
点云配准是使不同视角下的点云数据实现正确拼接,解算三维空间刚体平移和旋转参数是点云配准中的核心问题。文中针对刚体运动参数求解问题,分析现有的奇异值分解法(SVD)、正交分解法(OD)、单位四元数法(UQD)、对偶四元数法(DQD)4种不同的估计方法,通过模拟实验及实例展开分析,探讨各自的优缺点及适用性,结合实例结果表明,对偶四元数求解刚体运动参数的总体性能最优,在实际应用中可以优先使用对偶四元数进行刚体变换参数求解。  相似文献   

15.
16.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   

17.
胡亚轩  王庆良  郝明 《测绘科学》2011,36(6):37-38,12
为了解决采用GPS观测数据求解块体欧拉矢量过程中可能出现的矩阵病态问题,本文介绍应用L曲线法求解块体旋转的欧拉矢量,并对计算结果进行了误差估计;最后通过实例解算,表明该方法求解结果精度高,得到点位的水平运动速度残差南北向85%,东西向79%以上在1mm以内,GPS观测速度与理论速度残差可用来分析块体内部的变形特征.  相似文献   

18.
Spectral invariants provide a novel approach for characterizing canopy structure in forest reflectance models and for mapping biophysical variables using satellite images. We applied a photon recollision probability (p) based forest reflectance model (PARAS) to retrieve leaf area index (LAI) from fine resolution SPOT HRVIR and Landsat ETM+ satellite data. First, PARAS was parameterized using an extensive database of LAI-2000 measurements from five conifer-dominated boreal forest sites in Finland, and mixtures of field-measured forest understory spectra. The selected vegetation indices (e.g. reduced simple ratio, RSR), neural networks and kNN method were used to retrieve effective LAI (Le) based on reflectance model simulations. For comparison, we established empirical vegetation index-LAI regression models for our study sites. The empirical RSR–Le regression performed best when applied to an independent test site in southern Finland [RMSE 0.57 (24.2%)]. However, the difference to the best reflectance model based retrievals produced by neural networks was only marginal [RMSE 0.59 (25.1%)]. According to this study, the PARAS model provides a simple and flexible modelling tool for calibrating algorithms for LAI retrieval in conifer-dominated boreal forests. The advantage of PARAS is that it directly uses field measurements to parameterize canopy structure (LAI-2000, hemispherical photographs) and optical properties of foliage and understory.  相似文献   

19.
Accurately estimating the spatial distribution of forest aboveground biomass (AGB) is important because of its carbon budget forms part of the global carbon cycle. This paper presented three methods for obtaining forest AGB based on a forest growth model, a Multiple-Forward-Mode (MFM) method and a stochastic gradient boosting (SGB) model. A Li-Strahler geometric-optical canopy reflectance model (GOMS) with the ZELIG forest growth model was run using HJ1B imagery to derive forest AGB. GOMS-ZELIG simulated data were used to train the SGB model and AGB estimation. The GOMS-ZELIG AGB estimation was evaluated for 24 field-measured data and compared against the GOMS-SGB model and GOMS-MFM biomass predictions from multispectral HJ1B data. The results show that the estimation accuracy of the GOMS-MFM model is slightly higher than that of the GOMS-SGB model. The GOMS-ZELIG and GOMS-MFM models are considerably more accurate at estimating forest AGB in arid and semiarid regions.  相似文献   

20.
将一元线性回归总体最小二乘平差模型展开后,以因变量和自变量改正数的平方和最小为约束条件,推导其总体最小二乘的迭代算法,并将模型扩展到多元线性回归,进一步得到线性回归模型的总体最小二乘算法。通过实例分析,证明算法的可行性和合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号