首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用激光雷达和多角度频谱成像仪数据估测森林垂直参数   总被引:3,自引:0,他引:3  
植被的结构参数如植被高度、生物量、水平和垂直分布等,是影响陆地与大气能量交换乃至生物圈多样性的重要因素。多数遥感系统虽然可以提供植被水平结构的图像,但是不能提供植被成分垂直分布的信息。大尺度激光雷达仪器如LVIS产生的激光雷达信号,已成功地用于估计树高和森林生物量,然而大多数激光雷达仪器不具备图像能力,只能提供一个区域内的采样数据。其他的遥感数据如多角度高光谱、多频率多时相辐射计或雷达数据,可根据GLAS(Geoscience Laser Altimeter System)采样的测量用来推断出连续的森林结构区域覆盖参数。 MISR(Multi-angle Imaging Spectrometer)对陆表多角度的成像能力,可以通过BRDF的各向异性提供植被的结构信息。结合激光雷达的垂直采样和MISR的图像,区域内乃至全球性的森林空间参数的成像是可能的。ICESat卫星上的GLAS数据、Terra卫星上的MISR数据为区域或全球性森林结构参数提供了可能。本文的研究目的是评估GLAS数据,分析类似于MISR的数据对森林结构参数的估计能力。本文中使用了LVIS、AirMISR和GLAS数据。通过对GLAS树高的测量与GLAS像元内来自LVIS的平均树高对比,发现它们是高度相关的。同时还探讨了多角度频谱成像仪数据预测树高信息的能力,这将在今后区域内森林结构参数映射加以研究。  相似文献   

2.
森林垂直结构参数遥感反演综述   总被引:3,自引:1,他引:2  
赵静  李静  柳钦火 《遥感学报》2013,17(4):697-716
随着遥感技术的发展,林业遥感从早期森林分类制图的定性研究,逐步发展到森林整体特性的遥感定量反演研究。目前利用遥感反演的森林叶面积指数、生物量、叶绿素浓度、碳储量等参数以描述森林生化理化特征、水平结构特征为主,而描述森林垂直结构的参数较少。本文针对不同高度处森林的叶面积密度和冠层垂直高度廓线参数,综述了遥感获取森林垂直结构参数的方法以及典型地表类型的垂直结构参数曲线,并总结了森林垂直结构参数提取方法中存在的问题,探讨未来研究方向。  相似文献   

3.
The accurate estimation of leaf water content (LWC) and knowledge about its spatial variation are important for forest and agricultural management since LWC provides key information for evaluating plant physiology. Hyperspectral data have been widely used to estimate LWC. However, the canopy reflectance can be affected by canopy structure, thereby introducing error to the retrieval of LWC from hyperspectral data alone. Radiative transfer models (RTM) provide a robust approach to combine LiDAR and hyperspectral data in order to address the confounding effects caused by the variation of canopy structure. In this study, the INFORM model was adjusted to retrieve LWC from airborne hyperspectral and LiDAR data. Two structural parameters (i.e. stem density and crown diameter) in the input of the INFORM model that affect canopy reflectance most were replaced by canopy cover which could be directly obtained from LiDAR data. The LiDAR-derived canopy cover was used to constrain in the inversion procedure to alleviate the ill-posed problem. The models were validated against field measurements obtained from 26 forest plots and then used to map LWC in the southern part of the Bavarian Forest National Park in Germany. The results show that with the introduction of prior information of canopy cover obtained from LiDAR data, LWC could be retrieved with a good accuracy (R2 = 0.87, RMSE = 0.0022 g/cm2, nRMSE = 0.13). The adjustment of the INFORM model facilitated the introduction of prior information over a large extent, as the estimation of canopy cover can be achieved from airborne LiDAR data.  相似文献   

4.
The current development of satellite technology particularly in the sensors like POLDER and MISR, has emphasized more on directional reflectance measurements (i.e. spectral reflectance of the target measured from different view zenith and azimuth angles) of the earth surface features mainly the vegetation for retrieval of biophysical parameters at regional scale using radiative transfer models. This approach being physical process based and uses directional reflectance measurement has been found to better and more reliable compared to the conventional statistical approach used till date and takes care of anisotropic nature (i.e. reflectance from the target is different if measured from different view angles) of the target. Keeping this in view a field experiment was conducted in mustard crop to evaluate the radiative transfer model for biophysical parameter retrieval through its inversion with the objectives set as (i) to relate canopy biophysical parameters and geometry to its bidirectional reflectance, (ii) to evaluate a canopy reflectance model to best represent the radiative transfer within the canopy for its inversion and (iii) to retrieve crop biophysical parameters through inversion of the model. Two varieties of the mustard crop (Brassica juncea L) were grown with two nitrogen treatments. The bidirectional reflectance data obtained at 5 nm interval for a range of 400–1100 nm were integrated to IRS LISS–II sensor’s four band values using Newton Cotes Integration technique. Biophysical parameters like leaf area index, leaf chlorophyll content, leaf length, plant height and average leaf inclination angle, biomass etc were estimated synchronizing with the bi-directional reflectance measurements. Radiative transfer model PROSAIL model was validated and its inversion was done to retrieve LAI and ALA. Look Up Table (LUT) of Bidirectional reflectance distribution function (BRDF) was prepared simulating through PROSAIL model varying only LAI (0.2 interval from 1.2 to 5.4 ) and ALA (5° interval from 40° to 55°) parameters and inversion was done using a merit function and numerical optimization technique given by Press et al. (1986). The derived LAI and ALA values from inversion were well matched with observed one with RMSE 0.521 and 5.57, respectively.  相似文献   

5.
林木空间格局对大光斑激光雷达波形的影响模拟   总被引:5,自引:1,他引:5  
庞勇  孙国清  李增元 《遥感学报》2006,10(1):97-103
激光雷达是近年来国际上发展十分迅速的主动遥感技术,在森林参数的定量测量和反演上取得了成功应用。激光雷达具有与被动光学遥感不同的成像机理,对植被空间结构和地形的探测能力很强。大光斑激光雷达系统一般指光斑直径在8—70m、连续记录激光回波波形的激光雷达系统。由于大光斑连续回波的激光雷达的光斑尺寸通常大于林木冠幅,波形中往往包含了森林冠层和许多森林元素的信息而不仅仅是单株树的信息。对于搭载在ICESAT卫星上的GLAS而言,光斑直径为70m,因此光斑对应着一片森林,包括很多棵树,在GLAS的激光光斑内树木的空间分布会有一定变化。同时激光雷达发射的脉冲信号在激光光斑内的分布也不均匀,而是从中心到边缘呈递减的分布。因此树木空间分布模式的变化对波形会产生一定的影响。通过对几种典型的树木空间格局进行模拟(包括规则分布、均匀(随机)分布和集群分布),假定激光光斑内能量呈高斯分布,模拟了各种树木分布模式林分的激光雷达信号。从模拟结果可见,森林的空间分布模式对大光斑激光雷达波形有明显的影响,对于波形面积(AWAV)和波形半能量高度(HOME),规则分布〉随机分布〉团状分布。其中对于HOME而言,规则分布和随机分布十分接近,而对于AWAV而言,聚集中心的变动不太敏感。  相似文献   

6.
中国南方森林冠顶高度Lidar反演—以江西省为例   总被引:1,自引:0,他引:1  
董立新  李贵才  唐世浩 《遥感学报》2011,15(6):1308-1321
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好(R2=0.7325);阔叶林次之(R2=0.6095);混交林较差(R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。  相似文献   

7.
吉林长白山森林冠顶高度激光雷达与MERSI联合反演   总被引:1,自引:0,他引:1  
将激光雷达与光学遥感相结合进行区域林分冠顶高度联合反演,提出了大脚印激光雷达GLAS脚点波形数据处理和不同地形条件下的森林冠顶高度反演算法,并建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演模型,制作了长白山地区森林冠顶高度图。  相似文献   

8.
This paper analyzes the backscatter of the microwave signal in a boreal forest environment based on a Ku -band airborne Frequency-Modulated Continuous Waveform (FMCW) profiling radar—Tomoradar. We selected a half-managed boreal forest in the southern part of Finland for a field test. By decomposing the waveform collected by the Tomoradar, the vertical canopy structure was achieved. Based on the amplitude of the waveform, the Backscattered Energy Ratio of Canopy-to-Total (BERCT) was calculated. Meanwhile, the canopy fraction was derived from the corresponding point cloud recorded by a Velodyne VLP-16 LiDAR mounted on the same platform. Lidar-derived canopy fraction was obtained by counting the number of the first/ the strongest returns versus the total amount of returns. Qualitative and quantitative analysis of radar-derived BERCT on lidar-derived canopy fraction and canopy height are investigated. A fitted model is derived to describe the Ku-band microwave backscatter in the boreal forest to numerically analyze the proportion contributed by four factors: lidar-derived canopy fraction, radar-derived canopy height, the radar-derived distance between trees and radar sensor and other factors, from co-polarization Tomoradar measurements. The Root Mean Squared Error (RMSE) of the proposed model was 0.0958, and the coefficient of determination R2 was 0.912. The fitted model reveals that the correlation coefficient between radar-derived BERCT and lidar-derived canopy fraction is 0.84, which illustrates that lidar surface reflection explains the majority of the profiling /waveform radar response. Thus, vertical canopy structure derived from lidar can be used for the benefit of radar analysis.  相似文献   

9.
激光雷达森林参数反演研究进展   总被引:6,自引:0,他引:6  
李增元  刘清旺  庞勇 《遥感学报》2016,20(5):1138-1150
激光雷达通过发射激光能量和接收返回信号的方式,来获取高精度的森林空间结构和林下地形信息。全波形激光雷达通过记录返回信号的全部能量,得到亚米级植被垂直剖面;离散回波激光雷达记录的单个或多个回波,表示来自不同冠层的回波信号。星载激光雷达一般采用全波形或光子计数激光剖面系统,仅能获取卫星轨道下方的单波束或多波束数据,用于区域/全球范围的森林垂直结构及变化观测。机载激光雷达多采用离散回波或全波形激光扫描系统,能够获取飞行轨迹下方特定视场范围内的扫描数据,用于林分/区域范围的森林结构观测。地基激光雷达多采用离散回波激光扫描系统,获取以测站为中心的球形空间内扫描数据,用于单木/样地范围的森林结构观测。激光雷达单木因子估测方法可分为CHM单木法、NPC单木法和体元单木法3类。CHM单木法通过局部最大值识别树冠顶点,采用区域生长或图像分割算法识别树冠边界或树冠主方向,NPC单木法一般通过空间聚类或形态学算法识别单木,体元单木法在3维体元空间采用区域生长或空间聚类算法识别树冠。根据激光雷达冠层高度分布可以估测林分因子,冠层高度分布特征来自于离散点云或全波形。多时相激光雷达可用于森林生长量、生物量变化等监测,以及森林采伐、灾害等引起的结构变化监测。随着激光雷达技术的发展,它将在森林调查、生态环境建模等生产与科学研究领域中得到更为广泛的应用。  相似文献   

10.
Remote sensing-based methods of aboveground biomass (AGB) estimation in forest ecosystems have gained increased attention, and substantial research has been conducted in the past three decades. This paper provides a survey of current biomass estimation methods using remote sensing data and discusses four critical issues – collection of field-based biomass reference data, extraction and selection of suitable variables from remote sensing data, identification of proper algorithms to develop biomass estimation models, and uncertainty analysis to refine the estimation procedure. Additionally, we discuss the impacts of scales on biomass estimation performance and describe a general biomass estimation procedure. Although optical sensor and radar data have been primary sources for AGB estimation, data saturation is an important factor resulting in estimation uncertainty. LIght Detection and Ranging (lidar) can remove data saturation, but limited availability of lidar data prevents its extensive application. This literature survey has indicated the limitations of using single-sensor data for biomass estimation and the importance of integrating multi-sensor/scale remote sensing data to produce accurate estimates over large areas. More research is needed to extract a vertical vegetation structure (e.g. canopy height) from interferometry synthetic aperture radar (InSAR) or optical stereo images to incorporate it into horizontal structures (e.g. canopy cover) in biomass estimation modeling.  相似文献   

11.
森林地上生物量遥感反演方法综述   总被引:9,自引:0,他引:9  
刘茜  杨乐  柳钦火  李静 《遥感学报》2015,19(1):62-74
森林地上生物量反演对理解和监测生态系统及评估人类生产生活的影响有着重要作用,日益发展的遥感技术使全球及大区域的生物量估算成为可能。近年来,不同的遥感技术和反演方法被广泛用于估算森林生物量。本文首先总结了现有的全球及区域生物量产品及其不确定性,然后综述了3类方法在森林地上生物量遥感反演中的应用,即基于单源数据的参数化方法、基于多源数据的非参数化方法和基于机理模型的反演方法,阐述了各类反演方法的特点、优势及局限性。最后从机理模型研究、多源遥感数据协同、生物量季节变化研究和遥感数据源不断丰富4个方面对今后的生物量遥感反演研究进行了展望。  相似文献   

12.
利用星载激光雷达的大光斑全波形数据估测植被结构参数、监测森林生态已受到广泛关注。为了更准确地理解森林植被的结构参数和光学特性对激光雷达回波波形的影响,利用实测森林植被数据提取植被空间分布的统计规律,考虑地形坡度变化和植被冠层反射特性的影响,生成参数化的森林植被空间轮廓反射模型,结合星载激光雷达的回波理论,建立了面向植被的星载激光雷达波形仿真器。由大兴安岭地区的实测植被数据提取的统计规律生成的森林目标仿真波形与地球科学激光测高仪系统(Geoscience Laser Altimeter System,GLAS)真实回波波形具有较好的一致性,平均相关系数R2达到0.91。通过波形仿真分析发现,光斑尺寸减小有利于大坡度地形的森林信息反演,研究成果对中国未来研制星载激光雷达载荷的系统参数设计具有参考意义。  相似文献   

13.

Background

Satellite-based aboveground forest biomass maps commonly form the basis of forest biomass and carbon stock mapping and monitoring, but biomass maps likely vary in performance by region and as a function of spatial scale of aggregation. Assessing such variability is not possible with spatially-sparse vegetation plot networks. In the current study, our objective was to determine whether high-resolution lidar-based and moderate-resolution Landsat-base aboveground live forest biomass maps converged on similar predictions at stand- to landscape-levels (10 s to 100 s ha) and whether such differences depended on biophysical setting. Specifically, we examined deviations between lidar- and Landsat-based biomass mapping methods across scales and ecoregions using a measure of error (normalized root mean square deviation), a measure of the unsystematic deviations, or noise (Pearson correlation coefficient), and two measures related to systematic deviations, or biases (intercept and slope of a regression between the two sets of predictions).

Results

Compared to forest inventory data (0.81-ha aggregate-level), lidar and Landsat-based mean biomass predictions exhibited similar performance, though lidar predictions exhibited less normalized root mean square deviation than Landsat when compared with the reference plot data. Across aggregate-levels, the intercepts and slopes of regression equations describing the relationships between lidar- and Landsat-based biomass predictions stabilized (i.e., little additional change with increasing area of aggregates) at aggregate-levels between 10 and 100 ha, suggesting a consistent relationship between the two maps at landscape-scales. Differences between lidar- and Landsat-based biomass maps varied as a function of forest canopy heterogeneity and composition, with systematic deviations (regression intercepts) increasing with mean canopy cover and hardwood proportion within forests and correlations decreasing with hardwood proportion.

Conclusions

Deviations between lidar- and Landsat-based maps indicated that satellite-based approaches may represent general gradients in forest biomass. Ecoregion impacted deviations between lidar and Landsat biomass maps, highlighting the importance of biophysical setting in determining biomass map performance across aggregate scales. Therefore, regardless of the source of remote sensing (e.g., Landsat vs. lidar), factors affecting the measurement and prediction of forest biomass, such as species composition, need to be taken into account whether one is estimating biomass at the plot, stand, or landscape scale.
  相似文献   

14.
Computer simulation models have seldom been applied for estimating the structural and biophysical variables of forest canopy. In this study, an approach for the estimation of leaf area index (LAI) using the information contained in hyperspectral, multi-angle images and the inversion of a computer simulation model are explored. For this purpose, L-systems combined with forest growth model ZELIG were applied to render 3-D forest architectural scenarios. The Radiosity-graphics combined model (RGM) was used to estimate forest LAI from the Compact High-Resolution Imaging Spectrometer/Project for On-Board Autonomy (CHRIS/PROBA) data. LAI inversion was performed using the look-up table (LUT) method. The estimated LAI was evaluated against in situ LAI measurement and compared against the LAI predictions from CHRIS data obtained using the Li-Strahler geometric-optical canopy reflectance model (GOMS). The results indicated that the method used in this study can be efficient strategy to estimate LAI by RGM model inversion.  相似文献   

15.
Light Detection and Ranging (Lidar) can generate three-dimensional (3D) point cloud which can be used to characterize horizontal and vertical forest structure, so it has become a popular tool for forest research. Recently, various methods based on top-down scheme have been developed to segment individual tree from lidar data. Some of these methods, such as the one developed by Li et al. (2012), can obtain the accuracy up to 90% when applied in coniferous forests. However, the accuracy will decrease when they are applied in deciduous forest because the interlacing tree branches can increase the difficulty to determine the tree top. In order to solve challenges of the tree segmentation in deciduous forests, we develop a new bottom-up method based on the intensity and 3D structure of leaf-off lidar point cloud data in this study. We applied our algorithm to segment trees in a forest at the Shavers Creek Watershed in Pennsylvania. Three indices were used to assess the accuracy of our method: recall, precision and F-score. The results show that the algorithm can detect 84% of the tree (recall), 97% of the segmented trees are correct (precision) and the overall F-score is 90%. The result implies that our method has good potential for segmenting individual trees in deciduous broadleaf forest.  相似文献   

16.
Quantitative estimates of forest vertical and spatial distribution using remote sensing technology play an important role in better understanding forest ecosystem function, forest carbon storage and the global carbon cycle. Although most remote sensing systems can provide horizontal distribution of canopies, information concerning the vertical distribution of canopies cannot be detected. Fortunately, laser radars have become available, such as GLAS (Geoscience laser altimeter system). Because laser radar can penetrate foliage, it is superior to other remote sensing technologies for detecting vertical forest structure and has higher accuracy. GLAS waveform data were used in this study to retrieve average tree height and biomass in a GLAS footprint area in Heilongjiang Province. However, GLAS data are not spatially continuous. To fill the gaps, MISR (multi- angle imaging spectrometer) spectral radiance was chosen to predict the regional continuous tree height by developing a multivariate linear regression model. We compared tree height estimated by the regression model and GLAS data. The results confirmed that estimates of tree height and biomass based on GLAS data are considerably more accurate than estimates based on traditional methods. The accuracy is approximately 90%. MISR can be used to estimate tree height in continuous areas with a robust regression model. The R2, precision and root mean square error of the regression model were 0.8, 83% and 1 m, respectively. This study provides an important reference for mapping forest vertical parameters.  相似文献   

17.
A leaf area index is a key parameter reflecting the growth changes of vegetation and one of the most important canopy structural parameters for performing quantitative analyses of many ecological and climate models. Although using high-resolution satellite data and the radiative transfer model (RTM) can be used to generate high resolution LAI products, the RTM method has some problems because its temporal resolution is low, the input parameters are more appropriate for a physics model, and some parameters are difficult to obtain. Problems that urgently need to be solved include improving the temporal-spatial resolution for LAI products and localizing LAI products. To explore an applicable method for the high-resolution LAI products in a small basin and to improve the inversion accuracy, we propose an approach for GF-1 WFV LAI retrieval using MOD15A2 data and the measured LAI of the Poyang Lake watershed. Empirical models were used to retrieve high resolution LAI values, and the results show that these models are well designed for analyzing time-series satellite data. Good correlations were obtained between the NDVI of the GF-1 WFV data, the retrieved LAI values and the MODIS LAI data from samples acquired in both summer and winter. The exponential NDVI model obtained the best LAI value estimation results from the GF-1 WFV data (R2 = 0.697, RMSE = 1.100); the best synthetic validation of the RMSE is 0.883, close to the optimum model. Therefore, the retrieval results more fully reflect the growth process of the different features. This study proposed an upscale method for developing a high spatial resolution GF-1 satellite standard LAI products retrieval model using MODIS data. The proposed method will be helpful for efficiently improving the temporal-spatial resolution of LAI products to benefit the extraction of vegetation parameter information and dynamic land use monitoring.  相似文献   

18.
植被生化组分的遥感反演方法研究   总被引:10,自引:2,他引:10  
颜春燕  刘强  牛铮  王长耀 《遥感学报》2004,8(4):300-308
从反演物理模型提取植被生化组分含量的角度 ,分别在叶片和冠层水平探讨了反演生化参量的方法。在叶片水平 ,利用实验室测量光谱数据 ,较为准确地提取了水分和叶绿素含量 ,通过比较真实光谱数据与利用模型和真实参数模拟的光谱数据 ,得出如下结论 :模型能否准确描述某个参数的作用是能否真正准确反演该参数的关键。在模拟的冠层水平 ,基于多阶段反演思想 ,采用了分步反演策略 ,最终较为准确地反演了生化参数。  相似文献   

19.
Effects of laser beam alignment tolerance on lidar accuracy   总被引:2,自引:0,他引:2  
One of the major lidar error sources not yet analyzed in the literature is the tolerance of the laser beam alignment with respect to the scanning mirror. In this paper, the problem of quantifying these errors is solved for rotating polygon mirror type lidar systems. An arbitrary deviation of the beam from its design direction–the vector of beam misalignment–can be described by two independent parameters. We choose these as horizontal and vertical components of the misalignment vector in the body frame. Either component affects both, horizontal and vertical lidar accuracy. Horizontal lidar errors appear as scan line distortions—along and across track shifts, rotations and scaling. It is shown that the horizontal component of misalignment results in a scan line first being shifted across the track and then rotated around the vertical at the new center of the scan line. Resulting vertical lidar error, being a linear function of the scan angle, is similar to that produced by a roll bias. The vertical component of the beam misalignment causes scan line scaling and an along track shift. The corresponding vertical error is quadratic with respect to the scan angle. The magnitude of these effects is significant even at tight alignment tolerances and cannot be realistically accounted for in the conventional calibration model, which includes only range, attitude and GPS biases. Therefore, in order to attain better accuracy, this model must be expanded to include the beam misalignment parameters as well. Addition of new parameters into the model raises a question of whether they can be reliably solved for. To give a positive answer to this question, a calibration method must utilize not only ground control information, which is typically very limited, but also the relative accuracy information from the overlapping flight lines.  相似文献   

20.
融合升降轨的极化干涉SAR三层模型植被高度反演方法   总被引:2,自引:0,他引:2  
森林参数的获取不仅可以估算地表生物量和林下地形,还有助于研究全球碳循环和分析全球气候变化。极化干涉SAR植被参数反演算法一般是基于随机地体两层模型(RVoG),但是当实际植被有着冠层、树干层和地表层的明显三层结构时,植被参数反演精度就会变差;另外,由于机载SAR系统数据的近距远距垂直向波数差异较大,导致试验结果存在着由其引起的系统误差。针对这两个问题,本文提出了一种融合升降轨的极化干涉SAR三层模型植被参数反演方法。该方法首先采用三层植被RVoG模型修正微波在穿透植被时的散射过程;然后采用融合升降轨道数据的方式削弱其系统误差;最后,采用非线性迭代平差的反演算法来进行植被高度反演。为了验证该方法的有效性,采用了德国宇航局DLR提供的BioSAR2008项目的两景升轨及两景降轨E-SAR P波段全极化SAR数据进行试验,并采用3组反演策略进行比较分析。结果表明,三层植被模型能够更好地描述植被散射过程;同时,新方法有效降低了由垂直向波数引起的系统误差,提高了树高反演精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号