首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
河南省一次冻雨过程中电线积冰厚度模拟   总被引:2,自引:1,他引:2  
杜骦  周宁  韩永翔  李哲  陆正奇  龚建福  刘唯佳 《气象》2019,45(5):641-650
利用WRF中尺度数值模式并耦合Jones积冰厚度模型,对河南省2010年2月8—11日的冻雨过程进行了大气环流分析以及电线积冰厚度的模拟。研究结果显示:(1)在河南大部和安徽北部,冷暖气团在此交汇且出现强逆温层,满足了冻雨产生的天气条件:(2)模拟的降水场和10 m高度风向风速均与观测相当,但模拟降水中心强度略大:(3)模拟电线积冰在地面温度低于0℃时出现并快速增长。在积冰增长及维持阶段,垂直方向温度与水合物的模拟结果显示高低空配置与积冰厚度的变化趋势相吻合。积冰首先出现在伏牛山以北地区,随时间推移,积冰向伏牛山外围的东南部扩展。模拟的范围和积冰厚度演变大体上与观测值吻合,证明该模式可用于河南地区的积冰预测。(4)部分地区仍存在积冰厚度模拟值偏大的现象,其原因可能来自地形模拟精度较粗、模拟风速偏大、风向与电线夹角理想化以及Jones积冰模型阈值范围较小等因素,这表明耦合了Jones积冰厚度的WRF模式虽然有一定的模拟能力,但仍需要进一步改进。  相似文献   

2.
3.

选用华山气象站1980—2008年电线积冰观测资料,将其转换为标准冰厚,并与每日4次温度、湿度、水汽压、风速、降水量等进行相关分析。结果表明:华山标准冰厚为0~20mm。积冰主要为5mm以下,出现频率达87.56%。风速为2.1~8m/s,积冰出现频率达75.72%。15mm以上积冰只出现在日平均风速为1.1~16m/s时,并以4.1~8m/s出现频率最大,为0.45%,占该厚度的60%。出现积冰时的水汽压(日4次水汽压中的最大值)多为3.1~7hPa,15mm以上积冰只出现水汽压为4.1~8hPa时。出现积冰的湿度多为81%~100%;15mm 以上积冰也出现在该湿度范围内。当20-08时降水量为5mm以下,华山积冰出现频率达91.03%;15mm以上积冰出现在降水量为0.1~20mm时,并以5.1~20mm频率最大。华山积冰时,14时气温主要为-9.9~5o C,积冰频率达88.24%。15mm以上的积冰也出现在该温度范围内,并以-4.9~0o C间频率最大,为0.45%。华山14时气温为-4.9~0o C、日平均湿度为90%~100%时,积冰出现频率最大,为25.41%,大于四分之一,其中出现5mm 以下积冰的频率为21.19%。15mm 以上积冰主要出现条件为-4.9~0o C、湿度90%以上,出现频率为0.45%,占该厚度的66%。
 

  相似文献   

4.
选用华山气象站1980-2008年电线积冰观测资料,将其转换为标准冰厚,并与每日4次温度、湿度、水汽压、风速、降水量等进行相关分析。结果表明:华山标准冰厚为O~20mm。积冰主要为5mm以下,出现频率达87.56%。风速为2.1~8m/s,积冰出现频率达75.72%。15mm以上积冰只出现在日平均风速为1.1~16m/s时,并以4.1~8m/s出现频率最大,为0.45%,占该厚度的60%。出现积冰时的水汽压(日4次水汽压中的最大值)多为3.1~7hPa,15mm以上积冰只出现在水汽压为4.1~8hPa时。出现积冰的湿度多为81%~100%;15mm以上积冰也出现在该湿度范围内。当20—08时降水量为5mm以下,华山积冰出现频率达91.03%;15mm以上积冰出现在降水量为0.1~20mm时,并以5.1~20mm频率最大。华山积冰时,14时气温主要为-9.9~5℃,积冰频率达88.24%。15mm以上的积冰也出现在该温度范围内,并以-4.9~0℃间频率最大,为0.45%。华山14时气温为-4.9~0℃、日平均湿度为90%~100%时,积冰出现频率最大,为25.41%.大于四分之一.其中出现5mm以下积冰的频率为21.19%。15mm以上积冰主要出现条件为-4.9~0℃、湿度90%以上,出现频率为0.45%,占该厚度的66%。  相似文献   

5.
利用河北省1980-2009年20个气象站的电线积冰观测资料,分析了河北省电线积冰的时空分布特征和不同方位电线积冰的特征。结果表明:河北省电线积冰平原多于山区;年际变化较大,呈减少的趋势;季节变化十分明显,1月份电线积冰日数最多;东西方向和南北方向的电线积冰在最大重量上有一定差别。利用常规观测资料、1°×1°间隔6h的NCEP资料和2010年1月1910日黄骅气象站逐时风向风速资料,对一次引起线路舞动的电线积冰天气过程进行了分析。结果表明:这次电线积冰是在地面冷空气与500hPa、700hPa低槽共同影响下由雨凇形成的。20日受冷空气影响,黄骅地面气温快速降至0℃附近,而850hPa温度由零上逐渐转为零下,在对流层低层有逆温层,气温的垂直结构有利于形成雨凇;发生舞动的线路走向与风向夹角较大;舞动发生在较大风速出现之后。  相似文献   

6.
青海东部电线积冰的初步观测分析   总被引:5,自引:1,他引:5       下载免费PDF全文
1 观测及资料处理 ① 观测 根据青海省电力部门关于输电线路积冰灾害的资料分析,青海出现积冰的时间段主要分布在春季3-4月及秋末10-11月份,出现的地区大部分在青海东部黄河与湟水两条水系之间的山区以及祁连山东段海拔较高的地区。基于时间和地区的分布特征,确定观测点设立在黄河与湟水两条水系之间山区的盘道地区,  相似文献   

7.
电线积冰物理过程与数值模拟研究进展   总被引:1,自引:0,他引:1  
杨军  谢真珍 《气象》2011,37(9):1158-1165
电线积冰对人们的日常生活、电力系统、通信系统等造成了巨大的影响,人们越来越关注电线积冰的形成条件及物理过程,包括气象条件、气流动力学、液滴运动轨迹以及热力学过程。通过外场观测、室内实验和数值模拟研究的不断开展,揭示出电线积冰质量增长过程决定于云降水粒子谱分布、碰撞效率、黏性率、冻结率、碰撞速度和角度等微物理参数,这些参数又受控于降水率、云雾含水量、温度、湿度、风向、风速等宏观气象条件。通过数值模式已可进行电线积冰量和积冰持续时间的定量研究和预测,进而在开发垂冰模式和形态模式等方面也取得了新的进展。在总结过去60多年来电线积冰物理机制和数值模拟研究主要成果的基础上,对开展进一步的深入研究进行了展望。  相似文献   

8.
陕西省电线积冰特征   总被引:4,自引:5,他引:4       下载免费PDF全文
选用陕西省宝鸡、华山、洛川、吴旗、榆林5站1980—2005年电线积冰观测资料, 分析了陕西省雨凇、雾凇及混合凇的分布特征与物理特性。结果表明:陕西省华山电线积冰最多、最大、最重。电线积冰以雨凇最多, 雾凇次之, 混合凇最少, 分别占55.2%, 27.9%和16.9%。各地积冰日多出现在11月至次年3月。雨凇、雾凇、混合凇的平均等效直径为10~25 mm, 极大值为78 mm; 平均质量为86~236 g/m; 华山积冰质量极值最大, 为1290 g/m; 积冰平均密度为0.22~0.34 g/cm 3, 混合凇最大, 雾凇最小。南北向等效直径的平均值、积冰质量、密度均大于东西向。近26年, 年最大积冰质量有增加的趋势。  相似文献   

9.
利用2009~2013年冬季华中电网电线覆冰在线观测系统对湖北省500 k V高压输电线路积冰状况进行实时观测获取的资料,结合MICAPS常规气象资料、探空数据及NCEP再分析资料,对湖北形成积冰的天气形势、积冰持续时间以及形成积冰的逆温层结进行研究。结果表明:积冰的高空环流形势主要是小槽发展型、横槽型和低槽东移型3类,分别占43.8%、31.2%、25%;电线积冰主要发生在每年的1月、2月、11月、12月,月平均积冰时数分别为65、42、11、9;积冰可分为降水型积冰和云雾型积冰,降水型积冰过程中,900~700 h Pa高度间存在由北至南风向切变,冷暖空气交汇形成愈加深厚的逆温对降水积冰维持与发展起到重要的作用。  相似文献   

10.
河曲县地处晋西北黄土高原腹地,属典型的温带大陆性季风气候,气候干燥,雨雪少,这种气候使得天气现象中,雨淞很少见。雾淞每年都要出现几次,主要集中在12月和1月雪后寒冷的日子里,一般都是比较轻的雾淞,直径不到15mm。但2006年12月5日出现的一次雾淞很大,超过15mm,达到了测重标准,近十几年来还是头一次出现。由于观测过程比较复杂,又是第一次碰到,现把此次观测过程记录下来,与广大地面观测员共同学习和探讨,以求测报工作质量提高。  相似文献   

11.
2009年起,研究组开展了电线积冰野外观测试验及道路结冰规律的观测研究,将电线积冰观测研究从传统的积冰气象条件和积冰厚度观测提升到了积冰气象条件、积冰厚度加积冰天气云降水微物理综合观测研究的新高度,揭示了积冰发生的微物理机制,研究积冰增长率及其影响因子,建立的积冰增长模型较好地模拟了积冰增长过程.对沥青、水泥、土壤三种...  相似文献   

12.

利用在2008—2016年冬季湖北恩施雷达站、金沙本底站、神农架大草坪和神农顶观测得到的30次持续时间超过24 h的完整电线积冰过程观测资料,分析了雨雾共生天气对积冰过程的宏观影响,根据积冰过程的物理模型探讨了过冷雾和冻毛毛雨天气下关键模拟参量的分布特征,最后给出了雨雾共生天气积冰厚度模拟的演变特征。结果表明:山区积冰的持续时间是影响其过程最大冰厚的关键因素,雨凇过程中冻毛毛雨的发生时次最集中,且其出现可能导致冰厚爆发性增长,有无冻毛毛雨出现时段的冰厚增长率平均值分别为1.26 mm·h-1和-0.11 mm·h-1;碰撞率是抑制过冷雾积冰的主要参量,其均值在0.1左右,而冻结率则是抑制冻毛毛雨积冰的主要参量,其均值在0.6左右;过冷雾积冰和冻毛毛雨积冰分别表现出阶段性增长和持续增长的变化特征,且冻毛毛雨积冰会抑制过冷雾积冰的发展。

  相似文献   

13.
利用在四川省阿坝、甘孜和雅安布置的3个称重式电线积冰自动观测站2017年2月4—5日观测资料讨论该装置观测数据处理方法并分析所观测气象要素与数据的关联度。结果表明:基于T值的小波滤波方法具有良好的滤波效果,经过小波滤波后原始数据中的干扰量得到了有效抑制和消除,保留了数据变化的特征信息。通过灰色综合关联度分析,气象要素与电线积冰称重数据的关联度大小依次为温度、气压和风速,关联度在0.516~0.632之间;综合风向玫瑰图分析发现,迎风向导线积冰的增长大于顺风向。  相似文献   

14.
利用佳木斯市气象观测站19511~2010年的电线积冰观测数据资料,对佳木斯市电线积冰的气候特征进行了统计分析.结果表明:电线积冰日数呈减少趋势;电线积冰均发生在采暖期内,其中1月份最多;佳木斯电线积冰多为雾凇造成,具有重量轻、危害小的特点.产生电线积冰时需同时具备低温和充足水汽两个条件.  相似文献   

15.
许艳  朱江  高峰  冯冬霞  李俊  何文春 《气象》2013,39(3):362-369
应用直径26.8和4 mm两种导线平行观测的电线积冰资料,对比分析两种观测资料中电线积冰直径、厚度、重量和标准厚度的差异,并对不同天气现象和气象条件下两种电线积冰观测资料的差异进行了讨论.结果表明:总体上,2011年1-5月全国大部分台站观测的两种导线电线积冰直径、厚度和标准厚度值差异不明显,重量差异较明显,且差值较大的站点主要分布在长江以南地区;分析不同天气现象和气象条件下两种观测资料的差异后发现,两种电线积冰直径和厚度值差异在雾凇和混合凇条件下较显著,而重量值差异在雨凇、风力0~3级和气温-5~0℃的条件下时相对最大.  相似文献   

16.
根据吉林省12个气象台站从1980年到2007年共28年的电线积冰资料,分析了吉林省电线积冰的种类、时间分布特征、地区分布差异、以及最大直径、最大厚度、最大重量等发生和表现特征,对各类电线积冰形成的机制做了初步的探讨。  相似文献   

17.
采用华山气象站1980—2007年的电线积冰观测资料和陕西省95个气象观测站资料,分析了电线积冰厚度与常规气象资料的相关性,并据此推算出各地距地面10m高度上历年标准的电线积冰厚度,用极值Ⅰ型推断30和50年一遇的最大积冰厚度。结合陕西省电力设计院设计经验、陕西省电网运行现状及历史电网冰灾事故调查情况,对陕西省电网冰区进行了初步划分。结果表明:最大积冰厚度与年雾凇日数、年雨凇日数有较好相关性;将全省分为6个积冰区,并分别绘制出全省不同区域30和50年一遇的1:500000积冰分布图。该结果已作为陕西省电力建设中电线积冰厚度设计的重要依据。  相似文献   

18.
根据湖北地区2008年2月和2009年1月500 k V高压输电线实时观测资料,结合MICAPS常规气象资料和NCEP再分析资料,研究了湖北张恩高压输电线上电线积冰形成的天气形势和气象条件。结果表明:两次积冰过程中500 h Pa深厚的低压槽和850 h Pa低涡配合切变线靠近湖北促使积冰加重;气温和风速在两次积冰过程的形成阶段起到主要作用。  相似文献   

19.
利用1970—2010年江西省16个气象站电线积冰监测资料和对应时段周边探空数据,将江西省分为赣北、赣中、赣南,分区合成分析江西省电线积冰特征和温度层结特征,主要结论如下:(1)江西省电线积冰日数逐年减少,90年代以后维持较低水平;(2)全省以雨凇型积冰为主,且赣北、赣中发生较为频繁;(3)赣北雨凇过后容易出现雾凇现象,造成持续电线积冰;(4)赣北、赣中雨凇型积冰温度层结符合"3层模型",融化层平均温度为1.5℃,800~900hPa为较强逆温层;赣南则类似于"1层模型",温度层结存在变化,但整层维持在0℃以下。  相似文献   

20.
利用北疆8个气象站1986—2015年电线积冰观测资料对北疆电线积冰的时空分布及区划作了初步分析。分别采用极值I型和皮尔逊III型概率分布函数,推算了不同重现期的积冰厚度并进行了检验对比,根据最大积冰厚度重现水平,对北疆积冰进行了区划。结果表明:电线积冰大多发生在冬半年,1和12月出现频率最高;电线积冰出现最多的地区是福海,最少的是塔城;平均标准冰厚最厚地区为昭苏;精河30 a、50 a一遇的设计冰厚在中冰区,其他各站点30、50 a一遇的设计冰厚都在重冰区,100 a一遇所有站点都在重冰区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号