首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响   总被引:13,自引:4,他引:13  
本文选择黄土高原半干旱区定西地区的一种地带性植被,天然甘蒙锦鸡儿灌丛,将其0~99m深的土壤水分含量与人工柠条锦鸡儿灌丛、人工杏树林、天然草地、放牧荒坡和农地的土壤水分含量进行了比较。结果发现,天然锦鸡儿灌丛在1m以下土壤各层的水分含量均高于人工柠条灌丛和人工杏树林,而与放牧荒坡和农地的土壤湿度接近,略低于农地。天然锦鸡儿灌丛4m以上土层的土壤湿度还明显高于天然草地;天然锦鸡儿灌丛形成的难效—无效水层深度在2m土层以上,而人工柠条灌丛形成的难效无效水层则深达56m,人工杏树林42m,天然草地、放牧荒坡分别为36m和33m,农地1m。  相似文献   

2.
陇中黄土高原土壤水分变化特征及其机理分析   总被引:1,自引:1,他引:1  
基于兰州大学半干旱气候与环境观测站(SACOL)2010年全年的观测资料,对陇中黄土高原半干旱区土壤水分的年变化和日变化特征进行了研究,并通过计算水汽通量与蒸散量,探讨了土壤-地表-大气间水分的交换和运移机理。结果表明:土壤湿度的季节变化主要受降水影响,各季节的平均土壤湿度均呈现出表层和深层低、中间层高的特点,最高值出现在地下10 cm附近;在无降水的情况下,土壤5~20 cm处的含水量呈现出夜间逐渐降低、白天逐渐上升的波形变化,这种变化与土壤水汽通量具有很好的一致性,而水汽通量的方向则受温度梯度的影响;在白天,地表温度高于气温与较深层地温,水汽在向空气蒸散的同时也由地表流向土壤深部,夜晚地表温度则低于较深层地温,水汽由土壤深部流向地表。因此土壤内部的水分蒸发主要出现在夜晚,且主要发生在地表40 cm以内的土壤孔隙中,而白天地表的实际蒸发主要存在土壤浅层0~5 cm,5 cm以下土壤水分的蒸发十分微弱。本研究结果对于改进半干旱区陆面计算模式以及当地的生态环境建设具有一定的参考价值。  相似文献   

3.
干旱半干旱区土壤水分研究进展   总被引:1,自引:1,他引:1  
常学尚  常国乔 《中国沙漠》2021,41(1):156-163
土壤水分调控着陆表-大气相互作用过程,是土壤-植物-大气连续体水分和能量交换的重要影响因子,也是影响生态系统水文、生物和生物化学过程的关键因素,是陆地生态系统中不可或缺的组成部分.本文简要回顾和评述了土壤水分点、面尺度的监测、分析方法,系统阐述了干旱半干旱区土壤水分的国内外研究进展,并结合目前的研究进展,提出了未来干旱...  相似文献   

4.
黄土高原半干旱区生态环境恢复的对策研究   总被引:2,自引:0,他引:2  
黄土高原半干旱地区生态环境的恢复与重建是西部大开发再造秀美山川、实现人与自然和谐发展的必然要求.阐述了黄土高原的生态现状及其自然地理特征,分析了影响黄土高原生态环境治理和发展的主要问题,并根据黄土高原的实际情况,提出不同生态环境条件下促进生态环境恢复的可行对策,即注重协调人地关系,建立雨水资源利用技术体系,建立统一的管理与培训体系,科学发展小城镇.  相似文献   

5.
陇东黄土高原土壤水分演变及其对气候变化的响应   总被引:8,自引:4,他引:8  
杨小利 《中国沙漠》2009,29(2):305-311
以西峰为例,利用近45 a气象观测资料和近25 a的土壤水分观测资料,分析全球气候变暖背景下陇东主要气象要素及土壤水分的变化特征,探讨了气候变化对土壤水分的影响,以及影响土壤水分变化的主要气象因素。1993年以后,土壤水分以负距平为主,土壤干旱严重,0—50 cm和60—100 cm土层土壤水分含量在1997年和1995年降到最低值。春季是土壤水分减少最明显的季节,其中表层土壤水分对气候变化的响应更为明显,而夏秋季,较深层的水分变化更为明显。影响土壤水分的气象因子以降水、蒸发为主,气温通过影响蒸发间接产生影响。通过对土壤水分演变特征及其影响因子的分析,为进一步理解土壤水分条件的恶化原因,采取措施,合理利用气候资源,调整农业生态布局,恢复生态环境,积极应对气候变化提供决策方面的参考。  相似文献   

6.
王静  丁其涛  伍光和 《中国沙漠》1999,19(4):384-389
黄土高原半干旱区的降水为集水农业发展提供了条件,但是,集水不仅取决于降水,还受地貌、地表组成物质、土地利用等因素制约。通过分析地貌条件和土地类型对集水的影响,提出了集水适宜度指标体系。同时,在综合分析影响集水的自然因素的基础上,划分出各集水地域类型,为确定集水有效区、集水工程规模及布局提供理论依据,使各地可因地制宜发展集水农业,避免造成不必要的损失。  相似文献   

7.
8.
黄土高原北部河北杨林的土壤水分特征   总被引:6,自引:0,他引:6  
以河北杨林为研究对象,在对其土壤水分进行7a定位观测的基础上,对其特点进行全面分析。结果表明:河北杨林土壤水分动态的周年变化规律主要受降水及其分配特点和生长期初土壤水分含量的影响。0cm-300cm深度内,生长期土层内土壤水分的年平均值多数年在64g/kg左右;特旱年仅50g/kg;特涝年也只有76g/kg;土壤水分条件较差;多数年份土壤水分的基本平衡;特旱、特涝年份土壤水分大量亏缺、积累,其值均达150mm以上。0cm-300cm深度内土壤水分剖面的垂直分布自上而下分为活跃层、过渡层和稳定层,但各层的厚度变化受年降水量的影响较大;土壤含水量的平均值随深度增加而减少,从72g/kg-57g/kg。除特涝年份的生长季中后期外,生长期内的北杨有较大的贮水库容,有利于土壤水的年际调节。  相似文献   

9.
基于SMOS的黄土高原区域尺度表层土壤水分时空变化   总被引:5,自引:0,他引:5  
李小英  段争虎 《中国沙漠》2014,34(1):133-139
用SMOS土壤水分数据、MODIS植被指数数据和TRMM月降水数据,通过对黄土高原区域尺度表层土壤水分含量时空变化的研究,对表层土壤水分的时空变化特征及其对降水的响应进行了分析。结果表明:黄土高原表层土壤水分空间分布主要表现为西部和东北部低、东南部较高。青海石质高山区及山西西南部等区域土壤水分含量与整个区域存在差异。黄土高原西部与河套平原部分区域表层土壤水分含量季节性变化较大。在不同降水条件下,土壤水分含量与降水量相关性呈显著差异。  相似文献   

10.
黄土高原不同生态类型NDVI时空变化及其对气候变化响应   总被引:1,自引:0,他引:1  
孙锐  陈少辉  苏红波 《地理研究》2020,39(5):1200-1214
了解植被的时空变化及其气候主控因子可为植被保护和恢复提供重要的理论依据。基于MOD13A1和气象数据,分析了黄土高原Normalized Difference Vegetation Index (NDVI)时空变化特征,探讨了NDVI对水热条件在不同时间尺度的响应特征。结果表明:黄土高原植被覆盖状态正在不断的改善,气候呈暖湿的发展趋势;83.77%的植被退化区(退化区面积占研究区总面积的5.79%)海拔<2000 m且退化类型以不显著减少为主,不同覆被类型的退化区海拔分布及退化比例差异明显,湿地的退化面积比最高(23.91%)、其次耕地(11.88%)。年尺度上,NDVI与降水呈正相关的面积高于气温,约75.06%的区域受水分条件控制;灌木地(海拔分布<2200 m)、耕地(<3000 m)、草地(<3000 m)和裸地(600~3700 m)等植被生长受水分条件影响;森林(<1000 m、1700~3700 m)和湿地(>2500 m)的植被生长受热量影响。月尺度上,黄土高原植被NDVI对热量响应以滞后1个月为主,不同植被对水热响应的滞后性差异明显,草地、湿地、耕地和裸地对热量响应以滞后1个月为主;森林和灌木地则表现水热同期的特征。伴随滞后时间的推移,水分主控面积逐渐降低,热量成为影响植被生长的主要因素,水热主控及响应滞后性分布受海拔影响明显。  相似文献   

11.
黄土高原不同气候区裸地水、热特征对比   总被引:1,自引:0,他引:1  
王胜  张强  王兴  李宏宇  张之贤 《中国沙漠》2013,33(4):1166-1173
为了更好地理解陆地表面水、热通量的空间差异,利用2009年和2010年1月黄土高原陆面过程观测试验(LOPEX)的陆面过程资料,对比分析了不同气候区主要地表水、热通量特征。结果表明:半干旱区的定西在近地层气象要素、土壤湿度、动量通量、地表能量及CO2通量等主要陆面特征物理量与半湿润区的平凉、庆阳差异明显;气候背景相接近的平凉、庆阳的主要陆面特征量比较接近。虽然地形、地势、海拔、下垫面影响因子也是影响陆面特征的重要因素,但是气候背景差异愈明显,陆面特征差异也愈大,即一个地区的气候背景是陆面过程特征的主要决定因子,对陆面特征产生综合影响,而地形、地貌只对一个或几个陆面物理量有影响。  相似文献   

12.
13 ka BP 以来黄土高原西部的植被与环境演化   总被引:2,自引:0,他引:2  
通过对黄土高原西部三个剖面的孢粉记录分析, 重建了该区13 ka BP 以来详细的植被 与气候演化序列。结果表明, 12.1 ka BP 以前, 研究区植被以干草原为主, 气候寒冷干燥。 12.1~9.8 ka BP 植被变化显著。期间出现两次显著的湿润期, 分别为12.1~11.4 ka BP、 11.2~11.0 ka BP, 可与博令暖期和阿勒罗得暖期对比; 两次持续时间和强度明显不同的干旱 期出现在11.4~11.2 ka BP 和11.0~9.8 ka BP, 可分别与中仙女木事件和新仙女木事件对比。 经过短暂的快速变湿后, 9.6~7.6 ka BP 研究区植被以疏林草原为主, 气候波动频繁但总体温 和偏干。7.6~4.0 ka BP 森林和森林草原植被出现, 气候温暖湿润。其中6.6~5.8 ka BP 温带落 叶阔叶林发育, 为研究区全新世最适宜期。自4.0 ka BP 以来研究区草原和荒漠草原交替出 现, 气候在总体干冷的环境下存在次一级的干湿波动。  相似文献   

13.
黄土高原西部弃耕地植被恢复与土壤水分调控研究   总被引:15,自引:0,他引:15  
选择黄土高原半干旱偏旱区2 a、3 a、4 a、5 a、7 a、9 a、12 a、20 a的弃耕台地和天然台地,调查各弃耕地和天然台地的植物种类、数量、盖度、频度和地上生物量,定期采样分析各样地0~100 cm土层土壤水分。结果表明:农田弃耕后植被沿天然植被方向演替,在演替过程中,植物种类数量逐渐增加,但在弃耕9 a后开始减少,20 a后接近于天然台地;更耐旱的多年生草本和小灌木种增加;除7~9 a波状变化外,植被盖度和地上生物量呈逐渐减少趋势,弃耕初期的植被盖度和地上生物量显著大于弃耕12 a后和天然台地;12 a和20 a弃耕地0~100 cm土层含水量高于其他弃耕地和天然台地,弃耕初期表层土壤含水量较高,天然台地含水量居中,但其植被对水分利用的时间延长,范围扩大,表明天然台地植被的水分利用率提高,植被群落更加稳定。  相似文献   

14.
中国黄土高原土壤湿度的气候响应   总被引:5,自引:2,他引:5  
利用中国黄土高原59个气象站1961—2002年月降水量和29个农业气象观测站从建站到2002年逐年4—10月旬土壤重量含水率资料,分析了黄土高原土壤湿度的地域和时间分布特征以及土壤湿度对生态的影响。结果表明:①黄土高原4—10月土壤湿度与降水量的地理分布有较好的一致性,两者都从东南向西北减少。受六盘山和太行山阻挡东南季风影响,在陇中和晋中黄土高原出现一条南北向的干舌;黄土高原半干旱气候区降水和土壤湿度等值线梯度大,气候变化敏感。②采用年降水量和变差系数把中国黄土高原土壤湿度划分为5个气候区域:草原化荒漠带土壤严重失墒区,荒漠草原带土壤失墒区;草原带土壤失墒区;森林草原带土壤湿度周期亏缺区;森林带土壤湿度周期亏缺区。前3个气候区位于黄土高原中北部,经雨季之后,土壤水分不能得到有效恢复,土壤经常处于重旱或轻旱状态。后2个气候区位于黄土高原南部,经雨季之后,土壤水分能得到有效恢复,土壤有季节性缺水现象。③影响土壤湿度的主要因素是降水,但气温也有不可忽视的作用。近20 a来,中国黄土高原降水减少,气温升高,土壤湿度有下降的趋势。  相似文献   

15.
以兰州干旱地区生态植被恢复技术研究与示范基地灌木品种研究小区为试验点,研究了黄土高原西部丘陵区坡面不同灌木下0~200 cm土层土壤水分特征,采用Brown-Forsythe检验方法和变异系数比较不同灌木覆盖下土壤水分含量的差异。结果表明:土壤水分的变化受到坡位、坡向、灌木种类的影响较大。相同土层的土壤水分变异系数基本为阴坡>半阴坡>半阳坡>阳坡。坡上部的土壤水分变化较大,坡中部和坡下部相对较稳定。多数灌木的土壤水分变异系数随着土壤深度的增加而减小,变异系数较大值相对集中在20~80 cm土层。从土壤水分的亏缺量、植物水分亏缺度来看,在植被恢复的过程中,选择荒漠锦鸡儿(Caragana roborovskyi)、甘蒙锦鸡儿(Caragana opulens)、枸杞(Lycium chinense)等耗水量相对较低的植被更加合理。  相似文献   

16.
不同植被类型的土壤水分对黄土高原的影响   总被引:9,自引:0,他引:9  
Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter-annual change. Soil moisture in 0–10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001, 2005 and 2006. Soil moisture in about 0–3 m of cropland and about 0–2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0–2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no significant differences among other vegetation types. In 2–10 m, there was no significant moisture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.  相似文献   

17.
Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter- annual change. Soil moisture in 0–10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001, 2005 and 2006. Soil moisture in about 0–3 m of cropland and about 0–2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0–2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no significant differences among other vegetation types. In 2–10 m, there was no significant moisture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号