首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Textural analysis, including estimates of concentrations of authigenic phosphate pellets, were made for eight sediment cores from the Peru continental margin. Phosphatic pellets separated from these modern organic-rich sediments are black, spherical-ovoidal in shape, and in thin section often display a concentric structure around a nucleus consisting of inorganic mineral grains. Some pellets have a gray-white exterior coating which appears to be secondary diagenetic calcite. Phosphatic pellets account for upwards of 80% of the sediment mass in some cores. Pellets concentrate in specific size classes, generally between 125 and 500 μm in diameter, and occur within a poorly sorted sediment.  相似文献   

2.
P. Lesueur  J. P. Tastet 《Marine Geology》1994,120(3-4):267-290
Seventy cores from the Aquitaine continental shelf were examined using radiographic and grain-size techniques in order to describe the sedimentary structures of the muddy deposits, and to evaluate their depositional processes. Four lithofacies are identified in this fine-grained deposit: (a) homogeneous silty sand, (b) interbedded homogeneous mud and sand, (c) silty-clayey mud, and (d) mottled mud. They show a logical pattern in relationship to the water depth and the distance from the coast.

Primary structures are present particularly in the landward and central portion of the mud fields, where the sediment is organized into sequences with a sharp-based erosional contact, overlain by a fining-up succession (centimetre to decimetre scale). The beginning of each of these is characteristic of a high-energy storm event, which is common on this shelf. The settling of suspended fine sediment corresponds to the flood estuarine discharge during quiet periods. Primary sedimentary structures decrease in the distal area where the muddy sediment is frequently reworked by infauna. Finally, primary structures and their preservation depend on the relative magnitudes of surface waves, storms, infaunal mixing and fluvial sediment deposition rates (i.e. floods).  相似文献   


3.
The oft-cited general correlation between net sediment accumulation and preservation of organic matter, while revealing in many ways, can be a misleading indicator of general elemental cycling processes and controls on storage of biogenic material at the continental-ocean boundary. Deltaic environments are characterized by the highest rates of net sedimentation and are the single most important class of depocenters on Earth. Available data indicate that sedimentary organic C (Corg) of both terrestrial and marine origin is efficiently decomposed in deltaic areas, with decomposition percentages reaching ≥70% and ≥90%, respectively, the latter percentage (marine) being quite comparable to deep-sea, low sedimentation environments. Despite high primary productivity associated with most deltas and evidence of substantial deposition of fresh planktonic debris, patterns of SO4= reduction indicate that the reactivity of organic material being buried is low, and that a larger proportion of Corg is often degraded compared to other marine deposits of similar net accumulation rate. As indicated by properties of the surficial Amazon delta and downdrift coastal region of northeast South America (1600-km extent), the primary reasons for efficient remineralization are related to intense and massive physical reworking of sediment associated with estuarine fronts, upwelling, tidal oscillation, and wind-driven waves. Fluid muds and mobile surface material cause the seafloor and continental boundary to act as a massive, suboxic, fluidized bed reactor dominated in some cases by bacterial rather than macrofaunal biomass. Reoxidation, repetitive redox successions, metabolite exchange, and continual mixing-in of fresh planktonic debris with refractory terrestrial components, result in an efficient decomposition system largely decoupled from net accumulation. Similar processes occur on smaller scales in most estuarine-shelf systems, but appear to be most dramatically expressed off the major rivers forming deltas.  相似文献   

4.
Magnetic properties were measured on 370 vibrocores obtained from the outer continental shelf of the East China Sea, with the aim of reconstructing environmental changes during the late Quaternary. High SIRM/χ values (>25 kA m−1) found in stiff muds of late Pleistocene age suggest the presence of magnetic iron sulfides, especially greigite. Framboidal aggregates of greigite were further identified by scanning electron microscopy (SEM) and attached energy dispersive X-ray (EDAX) analyses, as well as powder X-ray diffraction (XRD) analyses of the magnetic separates. The occurrence of magnetic iron sulfides indicates the complex oxidation–reduction of the stiff muds, resulting from exposure and inundation during the last glacial maximum (LGM) and the post-glacial transgression, respectively.  相似文献   

5.
Rare earth elements in the phosphatic-enriched sediment of the Peru shelf   总被引:1,自引:0,他引:1  
Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE/P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 × 10−3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment.

Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris.  相似文献   


6.
Alan Lees 《Marine Geology》1975,19(3):159-198
In modern, marine, carbonate sands from shelf areas between the equator and latitudes 60°S and 60°N several major grain associations can be distinguished.On open shelves (< 100 m water depth) there are two skeletal grain associations. One (chlorozoan) is virtually restricted to warm, tropical waters; the other (foramol) characterizes temperate waters but also extends into the tropics. The distribution of these two associations cannot be explained in terms of water temperature alone: salinity is suspected as being a further controlling factor. Indeed, a third skeletal association (chloralgal) appears to be characteristic of areas where salinity is higher than on open shelves.Non-skeletal grains, where present, can be grouped into two associations. In one, pellets are the only non-skeletal grains represented; in the other, ooliths and/or aggregate grains are also present. These non-skeletal associations are restricted to relatively warm waters, but temperature does not determine which one of the associations develops. Again, salinity seems important.As both salinity and temperature apparently influence the grain associations, an attempt is made to present the relationships diagrammatically. By using graph pairs of “maximum temperature/minimum salinity” and “minimum temperature/maximum salinity” (named S.T.A.R. diagrams after Salinity Temperature Annual Ranges), the various grain associations can be classed into separate salinity/temperature fields.Salinity and temperature often seem to have a mutual “compensating” effect. For example, even at high temperatures the chlorozoan association does not develop if the salinity falls below a certain value, but it develops at relatively low temperatures when salinity is sufficiently high.This “compensation” effect also appears on the S.T.A.R. diagram for non-skeletal associations. More striking here, however, is a relationship suggesting that development of the oolith/aggregate association is strongly dependent on salinity.Carbonate muds are not shown on the S.T.A.R. diagrams, but an attempt is made to assimilate them into the model.The S.T.A.R. diagrams have a predictive value. In principle, given salinity and temperature values for an area, the grain associations can be predicted. In fact, the prediction is one of “potential”, i.e. that which is to be expected provided any other necessary environmental conditions are satisfied. Predictions are presented for the shelves of an ideal ocean and of present-day oceans and seas. The S.T.A.R. diagrams thus provide the basis for a tentative global model of present-day shelf carbonate sedimentation.The special problems of land-locked seas are discussed with reference to the Mediterranean Sea and the Persian Gulf. Predictions are presented.To illustrate the possibilities of the S.T.A.R. diagram technique, an attempt at detailed prediction is given for an area — the Gulf of Batabano, Cuba — where the sediments are known and predictions can be checked.In conclusion, the problems inherent in applying the model to ancient sedimentary systems are briefly discussed.  相似文献   

7.
《Marine Geology》2005,216(4):275-296
Recent chirp seismic reflection data combined with multibeam bathymetry, backscatter, and analysis of grab samples and short cores provide evidence of significant recent erosion on the outer New Jersey shelf. The timing of erosion is constrained by two factors: (1) truncation at the seafloor of what is interpreted to be the transgressive ravinement surface at the base of the surficial sand sheet, and (2) truncation of apparently moribund sand ridges along erosional swales oriented parallel to the primary direction of modern bottom flow and oblique to the strike of the sand ridges. These observations place the erosion in a marine setting, post-dating the passage of the shoreface ravinement and the evolution of sand ridges that form initially in the near shore environment. Also truncated by marine erosion are shallowly buried, fluvial channel systems, formed during the Last Glacial Maximum and filled during the transgression, and a regional reflector “R” that is > ∼ 40 kyr. Depths of erosion range from a few meters to > 10 m. The seafloor within eroded areas is often marked by “ribbon” morphology, seen primarily in the backscatter data as areas of alternating high and low backscatter elongated in the direction of primary bottom flow. Ribbons are more occasionally observed in the bathymetry; where observed, crests exhibit low backscatter and troughs exhibit high backscatter. Sampling reveals that the high backscatter areas of the ribbons consist of a trimodal admixture of mud, sand and shell hash, with a bimodal distribution of abraded and unabraded sand grains and microfauna. The shell hash is interpreted to be an erosional lag, while the muds and unabraded grains are, in this non-depositional environment, evidence of recent erosion at the seafloor of previously undisturbed strata. The lower-backscatter areas of the ribbon morphology were found to be a well-sorted medium sand unit only a few 10's of cm thick overlying the shelly/muddy/sandy material. Concentrations of well-rounded gravels and cobbles were also found in eroded areas with very high backscatter, and at least one of these appears to be derived from the base of an eroded fluvial channel. Seafloor reworking over the transgressive evolution of the shelf appears to have switched from sand ridge evolution, which is documented to ∼ 40 m water depth, to more strictly erosional modification at greater water depths. We suggest that this change may be related to the reduction with water depth in the effectiveness of sediment resuspension by waves. Resuspension is a critical factor in the grain size sorting during transport by bottom currents over large bedforms like sand ridges. Otherwise, we speculate, displacement of sand by unidirectional currents will erode the seafloor.  相似文献   

8.
The interplay between the oxygen minimum zone and remotely-forced oxygenation episodes determines the fate of the benthic subsystem off the Central Peruvian coast. We analyzed a 12 year monthly time-series of oceanographic and benthic parameters at 94 m depth off Callao, Central Peru (12°S), to analyze: (i) near-bottom oxygen level on the continental shelf in relation to dynamic height on the equator (095°W); and (ii) benthic ecosystem responses to oxygen change (macrobiotic infauna, meiofauna, and sulphide-oxidizing bacteria, Thioploca spp.). Shelf oxygenation episodes occurred after equatorial dynamic height increases one month before, consistent with the propagation of coastal trapped waves. Several but not all of these episodes occurred during El Niños. The benthic biota responded to oxygenation episodes by undergoing succession through three major ecological states. Under strong oxygen deficiency or anoxia, the sediments were nearly defaunated of macro-invertebrates and Thioploca was scarce, such that nematode biomass dominated the macro- and meiobiotas. When frequency of oxygenation events reduced the periods of anoxia, but the prevailing oxygen range was 10–20 μmol L−1, mats of Thioploca formed and dominated the biomass. Finally, with frequent and intense (>40 μmol L−1) oxygenation, the sediments were colonized by macrofauna, which then dominated biomass. The Thioploca state evolved during the 2002–2003 weak EN, while the macrofauna state was developed during the onset of the strong1997–1998 EN. Repeated episodes of strong oxygen deficiency during the summer of 2004, in parallel with the occurrence of red tides in surface waters, resulted in the collapse of Thioploca mats and development of the Nematode state. Ecological interactions may affect persistence or the transition between benthic ecosystem states.  相似文献   

9.
Reinhardt  L.  Kudrass  H.-R.  Lückge  A.  Wiedicke  M.  Wunderlich  J.  Wendt  G. 《Marine Geophysical Researches》2002,23(4):335-351
About 6000 km of both bathymetric and high-resolution acoustic profiles were acquired on the shelf and upper slope offshore Peru between 9° S and 14° S. Two new sediment echosounder systems – SEL-96 and SES-2000DS – provided details of the sedimentary structures of the Quaternary sequences within the Sechura-Salaverry, Huacho and Pisco Basins. To a great extent, the poleward undercurrent determines the distribution of sediments. The undercurrent has generated numerous erosional unconformities, it has winnowed hardgrounds and has created mudwaves common between 250 m and 400 m water depth. Distinct subbottom reflectors within sedimentary units represent hiatuses due to periods of intensified winnowing or non-deposition. Erosional unconformities usually marked by pronounced reflectors suggest shifts of the undercurrent system related to climatic changes and eustatic variations of sea level. On a larger scale, the stacked prograding depositional sequences reflect the sea-level cycles of the Middle Pleistocene to the Holocene. Based on the stratigraphy of our piston cores and that of Ocean Drilling Program (ODP) Site 680, the depositional sequences limited by extended unconformities were assigned to oxygen isotope stages 1 to 7. Other sedimentary structures are small straight channels that were conduits for downslope sediment transport. Deformed sediments associated with synsedimentary normal faults result from creep movements indicating beginning slope failure.  相似文献   

10.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

11.
Sediments from a shallow, restricted estuary in southeast Australia were analysed for Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, P2O5 and organic carbon. Subjective interpretation of factor analysis on a geochemical basis, indicates that the dominant controls on the distribution and concentration of these metals and P2O5 in the mud sediments are the mineralogy of land-derived detritus and the chemical conditions of the environment in which the sediments are deposited. None of the transition-metal contents of the sediments, apart from Cr and possibly Cu, can be directly attributed to enrichment over that due to areal variation in detrital mineralogy. Chromium may be precipitated from the water column as a hydroxide in reducing environments, and Cu may be supplied to some extent by organic matter. Phosphate is enriched in the sediment through its association with organic matter. Manganese concentrations are depleted from the surface sediments of reducing environments. Iron sulphide and associated Ni and Zn sulphides are probably formed largely through early diagenetic reactions involving the mobilization of these metals from detrital mineral phases into authigenic phases. Evidence for the presence of these authigenic phases is found in sediments from areas where reducing conditions are likely to be most prevalent.  相似文献   

12.
13.
14.
The Adriatic Sea is a modern epicontinental basin where the late Quaternary transgressive systems tract shows substantial variations within two contrasting shelf domains, separated by a 250-m-deep remnant basin: a lowgradient shelf in the north, and a steeper margin in the south. Four differentiated sedimentary responses reflect contrasting physiographic domains and differences in the ratio between oceanographic regime and sediment input during relative sea-level rise. The progressive widening of the Adriatic epicontinental shelf, up to seven times its low-stand extent, also determines variations in the style of transgressive deposition by controlling major changes in oceanographic circulation.  相似文献   

15.
New petrographic and major element geochemical data from modern Peru margin upper slope-outer shelf phosphorites are presented, which provide insight into their origin and paragenetic relationship with other authigenic minerals (glauconite, pyrite and dolomite) occurring in organic-rich sediments. Glauconites are precipitated relatively early following the partial reduction of ferric iron and, following this process, phosphate, pyrite, and then dolomite precipitation take place at progressively deeper levels in the sediment in association with microbial reduction of sulfate. As in many ancient economic phosphorite deposits, the phosphatic facies here consist of nodules, crusts, coatings and strata composed of phosphatic pelletal grains (ooids, structureless grains, intraclasts, clumps and biogenic grains) in association with organic-rich biosiliceous sediments. All are considered to have formed within a few centimeters or within a few tens of centimeters below the sediment-water interface. Important factors that influence which morphology will tend to develop include the amount of available pore space, the presence of suitable nucleation sites, the amount and size of siliciclastic detritus incorporated as inclusions and the relative solution chemistries of the precipitating solutions. Bacterial mediation may play an important, but as yet unspecified role in the precipitation process. Textural data and factor analysis of chemical data suggest that structureless pellets are relatively inclusion-free Na-F-Mg-CO3-substituted pore-water precipitates whereas ooids are inclusion-rich pore-water precipitates poor in lattice-substituted components. Variations in nodular cement birefringence and crystallinity are suggested to have been produced by similar lattice substitutions that directly reflect pore-water carbonate ion concentrations and thus relative degrees of organic-matter degradation. Phosphate and dolomite are intimately mixed, yet mineralogically distinct phases in phosphatized dolomicrites.

Depth-stratified threshold carbonate ion concentrations may control the lower limit at which phosphatic minerals may precipitate. Below depths of a few centimeters, excessive carbonate ion concentrations and diminished reactive iron and sulfate concentrations favor the development of dolomite while precluding further development of phosphatic minerals and pyrite. Periodic sediment reorganization (bioturbation, current winnowing and erosion, mass wasting, etc.) plays an important role in both concentrating pelletal grains and maintaining nodules and crusts at critical depth levels in the sediment, as well as mixing ordered mineral parageneses into complicated sequences.  相似文献   


16.
The geometry and internal structures of modern sediments on the inner shelf off the southeastern coast of Korea were investigated by means of analysing high-frequency (3.5 kHz) seismic records. The records reveal a wedge-shaped sediment body, tapering off toward the sea. On the basis of reflection patterns, the sediments can be classified into two units; foreset (prodelta) unit and bottomset unit, consisting of sandy muds and clays, respectively. The lateral transition from foreset to bottomset deposits suggests a prograding delta system of the Nakdong River since the late Holocene.  相似文献   

17.
The sedimentary features of the inner-middle shelf of the strait of Bonifacio (western Mediterranean) were analyzed to evaluate the relationship between the production and transport of biogenic carbonate sediments and the basin morphology and hydrodynamics. A three-dimensional hydrodynamic modeling was performed in order to simulate the influence of waves and currents at seabed level. Superficial sediments were collected at depths ranging from 5 to 80 m and were analyzed for grain size, mineralogical composition and skeletal carbonate composition. Posidonia oceanica seagrass meadows border the coasts in a narrow strip on both sides of the strait down to a depth of 40 m. At greater depths, the seabed is characterized by the presence of plateaus and ridges which are controlled by outcropping bedrock morphology.  相似文献   

18.
Section 57 of the Royal Decree of July 9, 1976 "relating to safe practice for the production, etc., of submarine petroleum resources," states that "the ministry may require that load-bearing structures shall be provided with instruments." Based on this section, the Norwegian Petroleum Directorate has issued "regulations for the recording and processing of E- and P-data." One aim of these regulations is to be a basis for collection and analysis of data of fixed installations (P-data) as well as data of the environment round the installations (E-data). The continuous recording of the different parameters, as required by the regulations, results in the accumulation of a tremendous amount of data. Further, the data must be verified, organized, and structured for later use in different types of calculations. A special organization and a data bank have been created to undertake the tasks of collecting the data from the installations, creating necessary tools (such as computer routines and programs) for receiving source data, and doing necessary analysis such as spectral analysis, stochastic dynamic behavior analysis, cumulative fatigue analysis, etc., and producing reports. Furthermore, an environmental center for E-data from the Norwegian continental shelf has been created and is being administrated by the Norwegian Meteorological Institute. Original E-data will be made publicly available upon request and data summaries and statistics will be published regularly. This data bank will also contain standard meteorological observations gathered on the continental shelf from ships, semi-submersibles, etc.  相似文献   

19.
The anisotropy of magnetic susceptibility was measured on 42 gabbros sampled across a complete plutonic sequence from the Oman ophiolite. The rock fabrics, investigated in the field and through plagioclase crystallographic fabric measurements, were compared to the magnetic fabrics. This comparative study reveals that from the paleo-Moho to the top of the foliated gabbros level, 73% of the rocks display a good correspondence in orientation, between the magnetic and rock fabric orientation. In these rocks, the AMS is controlled by secondary magnetites located in the fracture network of the olivines, and probably, but to a lesser extent, by secondary magnetites located in the exsolution lamellae of the clinopyroxenes. The high correlation between the AMS ellipsoid orientation and the rock fabric orientation is explained by the fact that the magnetic foliation is essentially constrained by the orientation of the olivine fracture planes, which is in turn constrained by the orientation of the overall magmatic rock fabric. In contrast to the primary mineral phases, the orientation of magnetite crystals in these gabbros is not due to their alignment in a flowing magma, so their preferred orientation, although usually mimicking that of the rock fabric, does have not the same origin. Furthermore, given that the preferred orientation of the anisometric secondary magnetites is much less perfect than the preferred orientation of the plagioclases, no correlation between the shape and magnitude of the AMS and plagioclase fabrics can be established. In the uppermost levels of the sequence there is no correspondence between the magnetic and rock fabric orientation. The magnetism of these rocks is mainly carried by primary magnetite and ilmenite grains. These minerals occur as small and scattered interstitial grains that exhibit neither alignment nor parallelism with the pre-existing rock fabric. Hence, the anisotropy, shape and orientation of the AMS ellipsoid are independent of the rock fabric ellipsoid. Although in the Wadi Al Abyad gabbros, just like in other magnetite bearing rocks (Rochette et al., 1992; Archanjo et al., 1995), the AMS cannot be used to evaluate the shape and strength of the finite strain ellipsoid, it can be reliably used to get the orientation of the rock fabric ellipsoid when the AMS is controlled by secondary magnetites.  相似文献   

20.
Samples of used drilling muds collected during the course of a single well drilling operation exhibited different degrees of acute toxicity to sheepshead minnows and grass shrimp. For moulting grass shrimp, Palaemonetes pugio, the 96-h LC50's were 360 to 14 560 ppm (μl/litre); many of these values were considerably lower than those reported from previous drilling mud assays. However, when some of the muds used in this study were tested on sheepshead minnows, Cyprinodon variegatus, the resulting 96-h LC50's (6300 to 100 000ppm) were well within the range of previously reported values.Although a number of the drilling mud samples had relatively high amounts of chromium due to the addition of sodium chromate, there was a low correlation between chromium concentration and toxicity. In only three drilling muds could chromium content alone account for the observed toxicities. Furthermore, chemical analyses revealed the presence of No. 2 fuel oil like petroleum hydrocarbons in the mud samples. Based on the results of toxicity tests with No. 2 fuel oil and the concentrations of oil present in the muds, the toxicity of the mud samples to grass shrimp appears to be largely attributable to the petroleum hydrocarbon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号