首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文对南海地区(0—20°N,105—135°E)海气环境场进行EOF分析。其结果除了深入了解南海地区气候的基本场外,还揭示了叠加在基本场上的各种扰动场与热带天气系统的联系,为研究南海ITCZ等热带天气系统以及南海环境场对EL—Ni(?)o现象的反映提供了研究依据。  相似文献   

2.
根据月平均热通量(TropFlux)资料,使用相关分析和线性倾向估计以及经验正交分解(EOF)等方法,标记5个特征海区,以反映北印度洋净热通量的季节、年际和年代际变化特征。结果显示:冬季阿拉伯海失热区比孟加拉湾失热区失热多;夏季只有亚丁湾海域失热,斯科特拉区得热量值和赤道区相当。北印度洋净热通量季节分布呈现春季峰值大于秋季的双峰分布。近些年来,阿拉伯海和亚丁湾海域失热减小,孟加拉湾失热增多,赤道得热有下降的趋势。阿拉伯海、孟加拉湾和亚丁湾失热区净热通量的季节、年际和年代际变化主要由潜热和感热决定,亚丁湾夏季失热还与长波辐射有关。冬季净热通量异常场分解出3个独立模态,累计贡献率可达53.87%,第一模态为主模态,阿拉伯海失热区失热减少、孟加拉湾失热区失热增多的年代际变化特征。夏季净热通量异常场前3个模态的累计贡献率为57.42%,第一模态为主模态,北印度洋全场一致性得热,且以热带印度洋西部为最强的年代际变化。  相似文献   

3.
南海暖水季节和年际变化的初步研究   总被引:1,自引:1,他引:1  
南海暖水具有明显的季节和年际变化。利用气候平均的COADS资料和NCEP大气资料分析了南海暖水的季节变化及其与海面净热通量的关系,以及由此引起的南海地区大气环流的变化。发现海面净热通量在南海暖水的季节变化过程中起到了主要的作用;冬季无暖水存在时,最大上升气流位于赤道及以南地区的印尼群岛附近,夏季最大上升气流北移到了南海暖水上空,南海暖水上空对流强烈,成为大气的对流活动中心。利用50年逐月的SODA海温资料进行垂直方向的3次样条插值,定义并计算南海暖水的强度指数,分析南海暖水的年际变化,并对南海暖水的几个异常暖年份作了合成分析,探讨了暖水年际变化的形成因素。  相似文献   

4.
南海上层海洋热含量的年际和年代际变化   总被引:15,自引:0,他引:15  
分析了1959-1988年南海表面至100m垂直平均温度资料,结果表明,南海上层海洋热含量存在明显的准两年,4-5年和年代际振动,在E1 Nino年,南海上层热含量显著增加,50年代末至70年代初,南海TAV为负距平,此后转为正距平,南海TAV的变化与ENSO事件,东亚冬季风和热带大气环流的变异密切相关。  相似文献   

5.
南海上层海洋热含量的年际和年代际变化   总被引:1,自引:0,他引:1  
分析了1959—1988年南海表面至100m垂直平均温度(TAV)资料,结果表明:南海上层海洋热含量存在明显的准两年、4—5年和年代际振动。在E1Nino年,南海上层热含量显著增加。50年代末至70年代初,南海TAV为负距平,此后转为正距平。南海TAV的变化与ENSO事件、东亚冬季风和热带大气环流的变异密切相关。  相似文献   

6.
太平洋年代际变化研究进展浅析   总被引:1,自引:3,他引:1  
综述了近几年太平洋年代际变化形成机制或起因的7种代表性观点,对已有观点作了初步评述,并提出未来太平洋年代际变化研究应关注以下方面:太平洋年代际变化的多重模态及相应的多重机制,不同时空尺度海洋现象间的相互作用,南太平洋年代际变化及在全太平洋年代际变化中的作用,ENSO与PDO的预测,海洋环流的年代际变化及其对气候变化的作用,海洋热能、机械能的收支及转换等关键问题.  相似文献   

7.
众所周知,ENSO(El Nino/ Southern Oscillation)是发生在热带太平洋的年际时间尺度上最强的气候信号,与 El Nino (La Nina)相应的正(负)海温距平(SSTA)主要分布于赤道中东太平洋地区(Rasmusson et al.,1982)。相对于热带太平洋的年际ENSO现象,人们注意到北太平洋海平面气压(SLP)存在更长周期的年代际变化(Trenberth et al.,1994),有人认为这与北太平洋的表层温度(SST)变化有关(Latif et al.,1994),也有人认为与热带SST的异常关系更为密切(Jacobs et al.,1994)。20世纪80年代后的ENSO事件和20世纪60,70年代有明显的差别(Wang,1995),20世纪90年后El Nino发生频数增加,并且在1997和1998年出现了20世纪最强的一次Nino事件(McPhaden,1999)。 因此,不论是作为大气年代际变化可能的一个驱动因子,还是作为年际ENSO的背景场,从整体上了解太平洋SST的年代际时间尺度上的时、空变化特征都是十分重要的。  相似文献   

8.
使用经验正交函数(EOF)等方法,分析了北太平洋(20°~60°N,120°E~120°W)上层海洋热含量(HST)、海表面气压(SLP)、海表感热和潜热通量的年代际变化特征,并探讨了北太平洋HST与阿留申低压在年代际时间尺度上的关系。研究表明:第1特征向量能很好地代表北太平洋HST年代际尺度上的时间和空间变化特征。在近50a中,北太平洋HST具有明显的年代际变化特征,周期约为25a,其中在20世纪60年代中后期到90年代初存在一个较强的完整周期震荡。变化中心位于38°N左右的西北太平洋,且在155°W处向南延伸。根据北太平洋上层海洋HST的冷、暖异常和增、减热趋势,年代际背景场可分为冷态和暖态以及增热期和减热期。对比研究发现,在年代际尺度上,北太平洋上层海洋热含量的增、减热过程通过影响以西北太平洋为中心的海表热通量,进而对阿留申低压有一定的控制作用。热含量增热过程对应于弱的阿留申低压,减热过程对应于强的阿留申低压,阿留申低压的响应一般滞后热含量增、减热趋势变化1~2a。北太平洋年代际背景场对其年际变化有较强的调制作用,且这种年际变化跟ENSO事件有一定的对应关系。  相似文献   

9.
副热带模态水(Subtropical Mode Water;STMW)在气候变化中起着重要作用。本文利用全球高分辨率数值模拟结果,研究了北太平洋STMW核心层盐度(Core Layer Salinity;CLS)的年代际变化及其物理机制。结果表明,CLS存在显著的年代际变化,其空间分布则与背景流场分布特征有关。侵蚀区CLS滞后生成区CLS约1~2年,这主要是海流平流输运引起的。生成区内,STMW的季节循环一般可分为生成期(12-4月)、隔离期(5-6月)和侵蚀期(7-11月),生成期混合层盐度(Mixed Layer Salinity;MLS)决定着隔离期和侵蚀期的CLS,而MLS年代际变化则主要由同太平洋年代际涛动存在负相关性的海表面淡水通量的变化引起。  相似文献   

10.
李强  冯俊乔  胡石建  胡敦欣 《海洋科学》2013,37(10):120-131
为了描述北太平洋上空Hadley 环流的纬向结构特征, 利用NCEP 再分析资料(1979~2010 年), 研究了北太平洋上空Hadley 环流纬向结构的季节和年际变化。发现在西太平洋, Hadley 环流季节性上升支呈西北-东南倾斜, 其垂向核心位于对流层中层, 纬向核心在北半球冬季(夏季)位于日界线附近(150°E); 而永久性上升支主要在东太平洋, 其垂向核心位于对流层低层, 且沿经度东移逐渐增强。根据纬向环流结构特征, 北半球冬季环流形态分为3 个区域: 160°E 以西, 主要表现为低层辐合高层辐散;160°E~130°W, 主要表现为高层辐合; 130°W 以东, 表现为低层辐合高层辐散特征。相似地, 北半球夏季环流形态也可沿纬向分为如下3 个区域: 165°E 以西、165°E~165°W 和165°W 以东, 分别对应东亚夏季风主导经圈环流区、过渡区、Hadley 环流主导经圈环流区。在年际变化上, 北太平洋Hadley 环流与ENSO 有很强的相关, 这与前人的研究是一致的。因此北太平洋上空Hadley 环流具有显著的空间性态, 并且对应时间尺度不同, 影响其变化的主要因素也不尽相同。  相似文献   

11.
Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly dependent on the wind speed, which fluctuates largely during the winter season. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
根据2004—2014年的全球海洋Argo网格数据集(BOA_Argo)和ECMWF ERA-Interim再分析资料,计算了冬季太平洋副热带东部海区的水团变性率及水团形成率,对南北太平洋副热带东部新生成模态水的年际变化及其形成机制进行了研究。结果表明:北太平洋副热带东部模态水(NPESTMW)和南太平洋副热带东部模态水(SPESTMW)的新生成体积及核心密度在2004—2014年具有明显的年际变化:NPESTMW主要经历了2005—2009年和2010—2013年2次持续4~5a的体积和密度增加过程,其中体积最大值出现在2009年,最小值则出现在2005和2014年。南半球SPESTMW则经历了2007—2009年和2010—2013年共两次持续3~4a的体积和密度减小过程,其中体积的最小值出现在2009、2013年,最大值出现在2010年。合成分析发现,由冬季海面热通量异常引起的深混合层内与模态水密度相当的水团表层形成率异常,可能是导致NPESTMW和SPESTMW新生成水体积年际变化的重要因素;同时,SPESTMW新生成水的年际变化受局地风应力旋度的年际变化影响明显。  相似文献   

14.
利用地理信息系统(GIS)技术对2004年7~9月在北太平洋秋刀鱼(Cololabissaira)资源调查中的渔业数据与水温之间的关系进行了初步分析。结果表明,各小渔场Ⅰ~Ⅳ的温跃层厚度及其平均值分别为23.21~45.23m(22.02m),9.26~26.16m(16.90m),19.03~27.60m(8.57m)和19.09~30.53m(11.44m)。各小渔场0~50m(50~100m)的温度梯度分别为0.46℃/m(0.40℃/m),0.36℃/m(0.14℃/m),0.49℃/m(0.24℃/m)和0.42℃/m(0.18℃/m)。50~100m水层时,各渔场最高单位捕捞努力量渔获量(CatchPerUnitEffort,CPUE)平均分布的各层温度范围较为接近,50m水层为3.00℃左右,75m水层约为2.00℃,100m水层为1.50℃左右。  相似文献   

15.
探讨了影响东北印度洋上层海水热含量变化的各要素的季节变化,以及其对热含量变化的贡献和作用过程.根据MOM4数值模拟所得的气候态数据,利用热力学方程积分所得的热通量方程,分析了热含量和各影响要素的季节变化过程.结果表明,东北印度洋海洋动力过程的作用主要存在于海洋上层100 m以内;该区域上层海水热含量的季节变化,是典型的海-气相互作用的结果,由动力过程和海表净热通量共同控制,2种作用都有明显的季节变化特征,并且随区域的变化两者贡献有所变化;西南季风爆发前,上层海洋热含量最大值的出现,是之前几个月动力作用和海表净热通量共同加热的结果.  相似文献   

16.
北印度洋的经向热输送与热收支的季节与年际变化   总被引:3,自引:1,他引:3  
探讨赤道以北印度洋的热量收支及变化机制。根据积分10年(1987~1996)的全球海洋模式(MOM 2 )资料,利用积分形式的热量平衡方程,系统地研究了北印度洋的经向热输送和热量收支的季节与年际变化。主要结论为:在季节尺度上,越赤道的经向热输送和赤道以北印度洋热含量变化有年循环特征,而海面净热通量呈现半年周期变化特点;在年际尺度上,热含量的变化主要由经向热输送的变化引起,其它项的影响较小;经向热输送集中在上5 0 0m ,尤其在15 0m以上;在总的经向热输送中,经向翻转环流的贡献起主要作用,涡动项的贡献比较小;某一纬度上经向热输送异常以及此纬度以北印度洋总的海面净热通量异常与此纬度上纬向积分的纬向风应力异常有很好的相关关系;还分析了10°N阿拉伯海和10°N孟加拉湾的经向热输送与越赤道的经向热输送的关系,以及海面净热通量各分量的变化特点。  相似文献   

17.
I~IOXThe bulk tranSfer method, direct measurement or gradient measurement method are usuallyused for the flux observation and calculation. These methods provide the flux values only in thelOCation where the measurements are carried out. In recent years scientists began to use medelcombined with remote sensing data for the calculation of heat flux. Its main poverty is tO obtainthe flux distribution over the wide ocean area simultaneously. Li Shiming et al. (1997) analyzedthe sensible and la…  相似文献   

18.
北黄海夏季pCO2分布及海-气CO2通量   总被引:1,自引:0,他引:1  
基于在2006年夏季北黄海收集的的高分辨率的表层CO2分压(pCO2)数据,结合水文和生物地球化学同步观测参数,探讨了夏季北黄海pCO2空间分布的控制因素。结果表明,夏季北黄海与大多数中低纬度陆架海类似,由于水温较高,表层pCO2较高(平均值为(463±41)μatm),整个海域相对大气CO2过饱和。表层pCO2分布具有明显的区域差异,辽南和鲁北近岸海域pCO2明显高于中部区域,辽南近岸的高pCO2主要与河流输入和水产养殖引起的生物好氧呼吸有关,而鲁北沿岸的高pCO2主要与烟台近岸的底层冷水涌升及由混合引起的高碳酸盐含量的黄河泥沙的再悬浮有关;在海区中部大部分水域,pCO2与温度之间有较好的相关性,说明温度是这一区域pCO2分布较为重要的控制因子。另外,采用Wannikhof的海-气气体交换系数估计了北黄海夏季海-气CO2通量,结果表明整个北黄海是大气CO2的源,平均释放速率为(4.00±0.57)mmol.m-2.d-1,高于南黄海夏季海-气CO2通量。  相似文献   

19.
热带太平洋盐含量的年际变化   总被引:1,自引:0,他引:1  
为揭示热带太平洋上层盐度与ENSO的关系,探讨热带海洋的盐含量收支问题,运用EOF方法对SODA资料中热带太平洋表层和次表层(157.5 m)间的盐含量变化特征进行了分析.结果表明,盐含量具有年际变化的特征,第一和第二模态的空间分布分别具有南北反相和东西反相的特点.这为更好地研究与全球水文循环有关的海洋热动力问题提供了依据.  相似文献   

20.
Reef development varies considerably around the high, raised‐limestone islands of the Commonwealth of the Northern Mariana Islands (CNMI). Here we examine the modern assemblages at 30 sites for coral composition, colony density, colony size, and fidelity. We defined four reef types and hypothesize the presence of environmentally driven ecological stasis, whereby the environment continuously selects for coral species membership, defines colony sizes, and over time creates the noted reef types. Our results show that constructional spur‐and‐groove reefs supported significantly larger coral‐colony sizes and higher coral species richness compared with high‐relief interstitial framework, low‐relief incipient, and non‐constructional coral assemblages. Non‐constructional reefs supported much smaller coral colony sizes, despite similar population densities, and were consistently found in association with high wave exposure. The distinct coral assemblages found on interstitial framework and low‐relief incipient reefs were not affiliated with any wave exposure regime, but were located adjacent to large watersheds and on islands with unique geological history. These assemblages were nested within the spur‐and‐groove species pool. Overall, modern coral cover was well predicted by bathymetric slope and watershed size, while species richness was additively influenced by two proxies of pollution, suggesting the latter is better suited for establishing management targets. In contrast with previous studies that suggested modern assemblages were biologically controlled in the CNMI, we show reef assemblages and reef development are highly influenced by long‐term environmental forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号