首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon to nitrogen (C:N) stoichiometry of phytoplankton production varied significantly during the spring–summer bloom in the North Water Polynya (NOW), from April through July 1998. The molar ratio of particulate organic carbon (POC) to nitrogen (PON) production by phytoplankton (ΔPOC:ΔPON) increased from 5.8 during April through early June to 8.9 in late June and July. The molar dissolved inorganic carbon (DIC) to nitrate+nitrite (NO3) drawdown ratio (ΔDIC: ΔNO3) increased from 6.7 in April and May, to 11.9 in June (no estimate for July because of ice melting). The discrepancy between ΔPOC:ΔPON and ΔDIC:ΔNO3 was likely due to dissolved organic carbon (DOC) production. Increased ΔPOC:ΔPON of phytoplankton and surface water ΔDIC:ΔNO3 throughout the phytoplankton blooms resulted from changes in physical properties of the upper water column, such as reduced thickness of the surface mixed layer that exposed phytoplankton to increased photosynthetically available radiation (PAR), accompanied by NO3 depletion. This is expected to have significant effects on the cycling of carbon (C) and nitrogen (N) in pelagic ecosystems, as the increased C:N ratio of organic matter decreases its quality as substrate for grazers and microbial communities. Based on ΔPOC:ΔPON, the ratio of POC to chlorophyll a (Chl) production (ΔPOC:ΔChl) and the relationship between Chl yields and NO3 depletion, we estimate that 71±17% and 46±20% of the depleted NO3 went to PON production in the euphotic zone over the polynya from April to early June, and late June to July, respectively. The remaining NO3 was likely channelled to dissolved organic nitrogen (DON) and heterotrophic bacteria, which were not returned to the dissolved inorganic nitrogen (DIN) pool through recycling during the course of the study. Hence, the autotrophic production of organic N and its recycling by the microbial food web were not coupled temporally.  相似文献   

2.
海草凋落叶的溶解有机物的释放及其生物地球化学意义   总被引:1,自引:0,他引:1  
Dissolved organic matter(DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon(C), 70% nitrogen(N) and 38% phosphorus(P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon(DOC), dissolved organic nitrogen(DON) and dissolved organic phosphorus(DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides(MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 μmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON: DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production(the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×10~3 mol/d DOC, 1.4×10~3 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter(POM)from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks.  相似文献   

3.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

4.
A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr−1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m−2 d−1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m−2 d−1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.  相似文献   

5.
The dynamics of organic carbon (C), nitrogen (N), and phosphorus (P) were examined during an in situ mesoscale iron-enrichment experiment in the western North Pacific in the summer of 2004. We separately determined the production of particulate organic matter (POM) and dissolved organic matter (DOM) and their subsequent removal during the bloom decline. As the iron-induced phytoplankton bloom progressed (days 0–14), POM increased in the surface mixed layer, while DOM did not increase significantly. The molar ratios for C:N, C:P, and N:P of the newly produced POM were estimated to be 4.9, 190, and 37 in the surface mixed layer, whereas the dissolved inorganic nitrogen to soluble reactive phosphorus drawdown ratio was 17. Preferential remineralization of P over C and N from the POM was postulated during the developing phytoplankton bloom. During the bloom decline (days 16–25), surface POM decreased with a similar C:N of 5.2. The N:P ratio of surface DOM increased during the bloom decline. Below the surface mixed layer, DOC and DON increased moderately after the peak of the bloom. The time-series variation of DOC and DON was not identical. The C, N, and P dynamics through the accumulation and removal of POM and DOM were complex. Grazing by mesozooplankton during the experiment may have played a significant role in the uncoupling of the dynamics of C, N, and P.  相似文献   

6.
The concentration of 15 amino acids in hydrolyzed particulate matter from different regions and depths of the Pacific Ocean has been measured by gas—liquid chromatography. The relative composition was similar for all samples in the euphotic zone, where the particulate amino acid (PAA) concentration ranged from 370 to 2260 nmoles/1 in coastal waters and from 90 to 260 nmoles/1 in the open ocean. Total PAA concentration dropped rapidly with depth, levelling off at 10–40 nmoles/1 below 200 m. Glycine, serine, glutamic acid and aspartic acid were the most abundant PAA in deep equatorial water and in deep off-shore California water. The nitrogen content of PAA could often account for 100% of the total particulate organic nitrogen present, while PAA carbon contributed up to 50% of the total particulate organic carbon in euphotic waters and down to 20% in deep waters. The protein equivalent to the total PAA content of particulate matter in near-surface waters amounted to 11–32 μg/1 at oceanic stations and up to 270 μg/1 at coastal stations.  相似文献   

7.
Seasonal variations in freshwater, salt, phosphorus and nitrogen budgets of Hakata Bay, Japan were investigated from April 1993 until March 1994. The internal sink of dissolved inorganic phosphorus (DIP) and nitrogen (DIN), and the internal source of dissolved organic phosphorus (DOP) and nitrogen (DON) predominate in the bay. This means that the production of organic matter is larger than respiration, and atmospheric CO2 is absorbed in the water column of Hakata Bay. Denitrification is more dominant than nitrogen fixation in the bay. Compared to Tokyo and Mikawa Bays, Hakata Bay is harder to eutrophicate, mainly due to the shorter residence time of freshwater.  相似文献   

8.
On the basis of the analysis of the many-year data on the vertical distributions of particulate organic carbon and nitrogen, we compute their annual average amounts for three typical layers of water in the deep part of the Black Sea: for a layer located above the oxycline and characterized by the formation of new portions of particulate organic matter in the course of photosynthesis, inside the oxycline, where the major part of oxygen is consumed and the major part of the flux of particulate organic matter is oxidized, and for the upper part of the anoxic zone characterized by the most active microbiological processes of oxidation of the organic substances and production of sulfides. The available literature data on sedimentation traps are used to study the downward annual average fluxes of particulate organic matter from the euphotic zone into the oxycline and into the anaerobic zone. The seasonal variability of the amounts and fluxes of particulate carbon and nitrogen is revealed.  相似文献   

9.
The variation of dissolved organic matter (DOM) and fluorescence characteristics during the phytoplankton bloom were investigated in Yashima Bay, at the eastern part of the Seto Inland Sea, Japan. We found significant accumulations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chromophoric dissolved organic matter (CDOM) fluorescence, and UV260 during the phytoplankton bloom period in 2005, although lower accumulations of DOC and DON and only increases of CDOM fluorescence were observed during the bloom period in 2006. Little or no correlation between DOM and phytoplankton abundance might be due to the composition of DOM, which is a complex mixture of organic materials. The 3D-EEM results revealed that the DOM produced around the phytoplankton bloom period contained tyrosine, tryptophan, and humic-like substances. Our results showed that the occurrence of phytoplankton bloom contributed to the production of DOM in coastal water but the DOM accumulation depended on the type of phytoplankton bloom, the phytoplankton species in particular. From our results, we concluded that phytoplankton have a great role in the dynamics of DOM as a producer in a coastal environment.  相似文献   

10.
Carbon budgets of the mesopelagic zone are poorly constrained, highlighting our lack of understanding of the biota that inhabit this environment and their role in the cycling and sequestering of carbon in the deep ocean. A simple food web model of the mesopelagic zone is presented that traces the turnover of particulate organic carbon (POC), supplied as sinking detritus, through to its respiration by the biota via three pathways: colonization and solubilization of detritus by attached bacteria, production of free-living bacteria following losses of solubilization products during particle degradation, and consumption by detritivorous zooplankton. The relative consumption of detritus by attached bacteria was initially specified as 76%, with the remaining 24% by detritivores. Highlighting an asymmetry between consumption and respiration, the resulting predicted share of total respiration due to bacteria was 84.7%, with detritivores accounting for just 6.6% (with 6.5% and 2.2% by bacterivores and higher zooplankton, respectively). Bacteria thus dominated respiration and thereby acted as the principal sink for POC supplied to the mesopelagic zone, whereas zooplankton mainly recycled carbon back to the base of the food web as detritus or dissolved organic carbon rather than respiring it to CO2. Estimates of respiration are therefore not necessarily a reliable indicator of the relative roles of bacteria and zooplankton in consuming and processing POC in the mesopelagic zone of the ocean. The work highlighted a number of major unknowns, including how little we know in general about the dynamics and metabolic budgets of bacteria and zooplankton that inhabit the mesopelagic zone and, specifically, the degree to which the solubilized products of enzymatic hydrolysis of POC by attached bacteria are lost to the surrounding water, the magnitude and factors responsible for bacterial growth efficiency, the role of microbes in the nutrition of detritivores, and the recycling processes by which zooplankton return what they consume to the food web as detritus and dissolved organic matter.  相似文献   

11.
《Journal of Sea Research》2003,49(3):157-170
The distribution of nutrients and carbon in the different pools present in the three functional layers (the upper, biogenic layer, the thermocline layer, and the deeper, biolythic layer) of the stratified NW Mediterranean Sea was examined. The stoichiometry between dissolved inorganic nutrients, which had low concentrations in the surface waters, indicated a deficiency in nitrogen, relative to phosphorus, and an excess nitrogen relative to phosphorus within the thermocline, as well as a general silicate deficiency relative to both N and P, even extending to the biolythic layer. The dissolved organic matter was highly depleted in N and, particularly, in P relative to C, with average DOC/DON ratios >60 and DOC/DOP ratios >1500 in all three layers. The particulate pool was also depleted in N and P relative to C, particularly in the biolythic layer. The concentration of biogenic silica was low relative to C, N and P, indicating that diatoms were unlikely to contribute a significant fraction of the seston biomass. Most (>80%) of the organic carbon was present as dissolved organic carbon. Total organic N and P comprised 50–80% of the N and P pool in the biogenic layer, and decreased with depth to represent 10–25% of these nutrient pools in the biolythic layer. The high total N:P ratios in all three depth layers (N/P ratio >20) indicated an overall phosphorus deficiency in the system. The high P depletion of the dissolved organic matter must derive from a very rapid recycling of the P-rich molecules within DOM, and the increasing C/N ratio of DOM with depth indicates that N is also recycled faster than C in the DOM. Because of the uniform depth distribution of the total dissolved nitrogen concentration, the increase in the percent inorganic N and the decline in the percent dissolved organic N with depth indicates that there must be biological transformations between these pools, with a dominance of DON production in surface waters and remineralisation in the underlying layers, from which dissolved inorganic nitrogen is supplied back to the biogenic layer. Downward fluxes of DON and DOC were estimated at 200–250 μmol N m−2 d−1 and 1.4–2.1 mmol C m−2 d−1, respectively, while there should be little or no export of P as dissolved organic matter. The downward DON flux exceeded the diffusive DIN supply of about 145 μmol N m−2 d−1 to the biogenic layer, suggesting that allochthonous N inputs must be important in the region.  相似文献   

12.
In the eastern North Water, most of the estimated annual new and net production of carbon (C) occurred during the main diatom bloom in 1998. During the bloom, at least 30% of total and new phytoplankton production occurred as dissolved organic carbon (DOC) and was unavailable for short-term assimilation into the herbivorous food web or sinking export. Based on particle interceptor traps and 234Th deficits, 27% of the particulate primary production (PP) sank out of the upper 50 m, with only 7% and 1% of PP reaching the benthos at shallow (≈200 m) and deep (≈500 m) sites, respectively. Mass balance calculations and grazing estimates agree that ≈79% of PP was ingested by pelagic consumers between April and July. During this period, the vertical flux of biogenic silica (BioSi) at 50 m was equivalent to the total BioSi produced, indicating that all of the diatom production was removed from the euphotic zone as intact cells (direct sinking) or empty frustules (grazing or lysis). The estimated flux of empty frustules was consistent with rates of herbivory by the large, dominant copepods and appendicularians during incubations. Since the carbon demand of the dominant planktivorous bird, Alle alle, amounted to ≈2% of the biomass synthesized by its main prey, the large copepod Calanus hyperboreus, most of the secondary carbon production was available to pelagic carnivores. Stable isotopes indicated that the biomass of predatory amphipods, polar cod and marine mammals was derived from these herbivores, but corresponding carbon fluxes were not quantified. Our analysis shows that a large fraction of PP in the eastern North Water was ingested by consumers in the upper 50 m, leading to substantial carbon respiration and DOC accumulation in surface waters. An increasingly early and prolonged opening of the Artic Ocean is likely to promote the productivity of the herbivorous food web, but not the short-term efficiency of the particulate, biological CO2 pump.  相似文献   

13.
Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m).The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m-2 day-1). Conversely, fluxes measured at 300 m were similar at both sites (3.6vs. 3.7 mmol C m−2 day−1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively.For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations.POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON.Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.  相似文献   

14.
A one-dimensional ecosystem model with two explicit size classes of phytoplankton was developed for the NE subarctic Pacific to investigate variations in the export of organic particles to the ocean interior due to potential changes in the environment. Specifically, the responses of the planktonic ecosystem to permanent removal of iron limitation and to warming (of 2 and 5 °C) were explored. The ecosystem model consists of five components (small and large phytoplankton, microzooplankton, detritus and nitrogen), and includes grazing by mesozooplankton that varies in time according to long-term observations at Ocean Station Papa (OSP). The model addresses the role of iron limitation on phytoplankton growth and includes temperature dependence of physiological rates. The ecosystem model was forced with annual wind and solar heating from OSP. The model best reproduced the low chlorophyll high nitrate conditions of the NE subarctic Pacific when both small and large phytoplankton were limited by iron such that their maximum specific growth rate was reduced by 10 and 70%, respectively. Sensitivity analysis showed that model results depended on the value of the iron limitation parameter of large phytoplankton (LFe-L) and the grazing parameters of micro- and mesozooplankton. To explore the effect of iron limitation, simulations were carried out varying the iron limitation parameters while maintaining the nitrogen flux at the base of the model constant and the grazing pressure by mesozooplankton unchanged. In the warming case, simulations were carried out increasing ocean temperatures by 2° and 5 °C applied only to the ecological components, the flux of nitrate at the base of the model was increased to obtain a steady annual cycle, and grazing by mesozooplankton remained constant. When compared with the standard case, model simulations indicated that both permanent removal of iron limitation and warming cause changes in food web structure and the carbon cycle. The response was more dramatic in the iron-replete case where the phytoplankton community structure in spring changed from one dominated by pico- and nanoplankton to one dominated by large phytoplankton, and primary production increased until it consumed all the external nutrient (N) supply to the upper layer. However, reducing iron deficiency actually led to lower annual primary production due to a decrease in the regeneration of nitrogen in the euphotic zone. These changes in food web structure influenced the magnitude, composition and seasonal cycle of sinking particles.  相似文献   

15.
1IntroductionThefluxesofcarbon,nutrients,andassoci-atedelementsinvolvedinthebiogeochemicalcyclesoutoftheeuphoticzoneareimportantinthestudyofglobalCO2 change.Someworkershaveproposedthatatthesteadystatethefluxofparticulateorganiccarbonoutoftheeuphoticzoneequalsthenewproduction(EppleyandPe-terson,1979;Eppley,1989).Generallytwometh-odscanbeemployedtoobtainthefluxdata.Oneistousesedimenttrapsintheupperocean(<200m)orfloatingsedimenttraps.Thoughthesedimenttraptechnologyhasshowntobeuse-fulfortimeser…  相似文献   

16.
During the first year of the Northeast Pacific GLOBEC program we examined the spatial distributions of dissolved and particulate organic carbon and nitrogen in the surface waters off the Oregon and Washington coasts of North America. Eleven east–west transects were sampled from nearshore waters to 190 km offshore. Hydrographic data and the distribution of inorganic nutrients were used to characterize three distinct water sources: oligotrophic offshore water, the Columbia River plume, and the coastal upwelling region inshore of the California Current. Warm, high salinity offshore water had very low levels of inorganic nutrients, particulate organic carbon (POC) and dissolved organic carbon (DOC). Warm, low salinity water in the Columbia River plume was relatively low in nitrate, but showed a strong negative correlation between salinity and silicate. The river plume water had the highest levels of total organic carbon (TOC) (up to 180 μM) and DOC (up to 150 μM) observed anywhere in the sampling area. Cold, high salinity coastal waters had high nutrient levels, moderate to high levels of POC and particulate organic nitrogen (PON), and low to moderate levels of DOC and dissolved organic nitrogen (DON). Each of these regions has characteristic C:N ratios for particulate and dissolved organic material. The results are compared to concentrations and partitioning of particulate and dissolved organic carbon and nitrogen in other regions of the North Pacific and North Atlantic Oceans.  相似文献   

17.
The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring carbon demand of planktonic bacteria was satisfied largely by autogenic production. The trophic efficiency was defined as the ratio between mesozooplankton grazing on a given source and food production. In spite of its major contribution to mesozooplankton feeding, the trophic efficiency of the linear food chain, restricted to the grazing on diatoms, represented only 5.6% of the available net primary production. The trophic efficiency of the microbial food chain, the ratio between mesozooplankton grazing on microzooplankton and the resource inflow (the bacterial carbon demand plus the nanophytoplankton production) amounted to only 1.6%. These low trophic efficiencies together with the potential contribution of ungrazed Phaeocystis-derived production to the bacterial carbon demand suggest that during spring 1998 most of the Phaeocystis-derived production in the Belgian coastal area was remineralised in the water column.  相似文献   

18.
A linear decrease in dissolved organic carbon and nitrogen with increasing salinity offshore from the Georgia coast suggests that organic nitrogen compounds contributed to coastal waters by rivers are stable during the period (2–3 months) of their transfer over the continental shelf. While the C/N ratio decreased with distance from shore, total dissolved organic nitrogen (DON), total amino nitrogen, and primary amino nitrogen showed similar relative decreases, suggesting that nitrogen is associated with refractory organic compounds. Measured amino nitrogen accounted for about 20% of the total DON, leaving about 80% of the organic nitrogen undefined.  相似文献   

19.
Redfield stoichiometry has proved a robust paradigm for the understanding of biological production and export in the ocean on a long-term and a large-scale basis. However, deviations of carbon and nitrogen uptake ratios from the Redfield ratio have been reported. A comprehensive data set including all carbon and nitrogen pools relevant to biological production in the surface ocean (DIC, DIN, DOC, DON, POC, PON) was used to calculate seasonal new production based on carbon and nitrogen uptake in summer along 20°W in the northeast Atlantic Ocean. The 20°W transect between 30 and 60°N covers different trophic states and seasonal stages of the productive surface layer, including early bloom, bloom, post-bloom and non-bloom situations. The spatial pattern has elements of a seasonal progression. We also calculated exported production, i.e., that part of seasonal new production not accumulated in particulate and dissolved pools, again separately for carbon and nitrogen. The pairs of estimates of `seasonal new production’ and `exported production’ allowed us to calculate the C : N ratios of these quantities. While suspended particulate matter in the mixed layer largely conforms to Redfield stoichiometry, marked deviations were observed in carbon and nitrogen uptake and export with progressing season or nutrient depletion. The spring system was characterized by nitrogen overconsumption and the oligotrophic summer system by a marked carbon overconsumption. The C : N ratios of seasonal new as well as exported production increase from early bloom values of 5–6 to values of 10–16 in the post-bloom/oligotrophic system. The summertime accumulation of nitrogen-poor dissolved organic matter can explain only part of this shift.  相似文献   

20.
On the basis of mass balance calculations performed for nitrogen (N) uptake experiments in the Southern California Bight (SCB), it has been suggested that a significant portion of dissolved inorganic N (DIN) uptake results in the production of dissolved organic N (DON). To investigate this process, the fate of ammonium (NH4+) and nitrate (NO3) uptake was quantified within the euphotic zone at three coastal stations in the SCB using 15N tracer techniques. Several trends in the fate of DIN and the production of DON were observed. First, production of particulate N (PN), from both NH4+ and NO3, was quantitatively more important in near surface waters, while DON release dominated within the nitracline. Second, the percentage of gross N uptake released as DON was generally higher when NO3, rather than NH4+, was the substrate. Third, the percentage of N released as DON was higher at night, relative to the day. Fourth, rates of DON release were significantly correlated to NH4+ regeneration, suggesting that similar mechanisms are responsible for both processes—presumably grazing. The results of this study indicate that the DON pool is a sink for DIN uptake on the time scale of hours. One implication of this finding is that new production estimates based on 15NO3 uptake rates will likely underestimate particle flux out of the surface layer because the rate of NO3 uptake is underestimated due to loss of DO15N during the incubation. On time scales of months to years, however, the N that is taken up as NO3 and released as DON will likely contribute to export flux via incorporation of the dissolved phase during seasonal mixing into sinking particles or transport. The export of DON on these time scales argues for the use of gross uptake rates to calculate f-ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号