共查询到20条相似文献,搜索用时 0 毫秒
1.
The North Atlantic Oscillation (NAO) and the Southern Oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6/8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6/8 years oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6/8 years that represents about 20% of the SO variance and about 25% of the NAO variance. 相似文献
2.
The effect of sea-ice on various aspects of the Southern Hemisphere (SH) extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control). In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker. 相似文献
3.
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm−2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation. 相似文献
4.
The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment 总被引:1,自引:0,他引:1
The effect of coastal upwelling on sea-breeze circulation in Cabo Frio (Brazil) and the feedback of sea-breeze on the upwelling signal in this region are investigated. In order to study the effect of coastal upwelling on sea-breeze a non-linear, three-dimensional, primitive equation atmospheric model is employed. The model considers only dry air and employs boundary layer formulation. The surface temperature is determined by a forcing function applied to the Earths surface. In order to investigate the seasonal variations of the circulation, numerical experiments considering three-month means are conducted: January-February-March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December (OND). The model results show that the sea-breeze is most intense near the coast at all the seasons. The sea-breeze is stronger in OND and JFM, when the upwelling occurs, and weaker in AMJ and JAS, when there is no upwelling. Numerical simulations also show that when the upwelling occurs the sea-breeze develops and attains maximum intensity earlier than when it does not occur. Observations show a similar behavior. In order to verify the effect of the sea-breeze surface wind on the upwelling, a two-layer finite element ocean model is also implemented. The results of simulations using this model, forced by the wind generated in the sea-breeze model, show that the sea-breeze effectively enhances the upwelling signal. 相似文献
5.
Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS) in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities. 相似文献
6.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters. 相似文献
7.
R. P. H. Berton 《Annales Geophysicae》2000,18(3):385-397
The statistics of quantities involved in the synthesis of cloud scenes have been investigated from an original data base. Frequency distributions of ice and water content (IWC), horizontal and vertical sizes (L and H), and top temperatures (T) of clouds above Europe have been derived for nine types of clouds (As, Cb, Ci, Cg, LwCg, OrCg, Cs, Ns, Sc). It appears that the cumulated frequency plots can be well fitted with log-normal or Weibull profiles, and that for IWC and T cloud types can be split into two or three classes according to slopes in logarithmic coordinates. Cross-correlation coefficients between IWC, L, H and T have been also derived. Implications for the physics of the cloud build-up processes are briefly outlined. Critical analysis and comparison of other published results are proposed. 相似文献
8.
The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM) and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction of the aircraft-induced NOx and ozone perturbations is realised. The NOx perturbation decreases by about 40% and the ozone perturbation by about 30% in July over Western Europe, the eastern USA and the North Atlantic Flight Corridor. 相似文献
9.
A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, control and doubled CO2 life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture. 相似文献
10.
Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere), and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere); the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the vertical resolution. 相似文献
11.
With a detailed chemistry scheme for the middle atmosphere up to 70 km which has been added to the 3-D Karlsruhe simulation model of the middle atmosphere (KASIMA), the effects of coupling chemistry and dynamics through ozone are studied for the middle atmosphere. An uncoupled version using an ozone climatology for determining heating rates and a coupled version using on-line ozone are compared in a 10-month integration with meteorological analyses for the winter 1992/93 as the lower boundary condition. Both versions simulate the meteorological situation satisfactorily, but exhibit a too cold lower stratosphere. The on-line ozone differs from the climatological data between 20 and 40 km by exhibiting too high ozone values, whereas in the lower mesosphere the ozone values are too low. The coupled model version is stable and differs only above 40 km significantly from the uncoupled version. Direct heating effects are identified to cause most of the differences. The well-known negative correlation between temperature and ozone is reproduced in the model. As a result, the coupled version slightly approaches the climatological ozone field. Further feedback effects are studied by using the on-line ozone field as a basis for an artificial climatology. For non-disturbed ozone conditions realistic monthly and zonally averaged ozone data are sufficient to determine the heating rates for modelling the middle atmosphere. 相似文献
12.
Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data 总被引:1,自引:0,他引:1
N. F. Arnold T. B. Jones T. R. Robinson A. J. Stocker J. A. Davies 《Annales Geophysicae》1998,16(10):1392-1399
Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters. 相似文献
13.
When the University of Bonn lidar on the Esrange (68°N, 21°E), Sweden, was switched on in the evening of July 18, 1998, a geometrically and optically thin cloud layer was present near 14 km altitude or 400 K potential temperature, where it persisted for two hours. The tropopause altitude was 4 km below the cloud altitude. The cloud particles depolarized the lidar returns, thus must they have been aspherical and hence solid. Atmospheric temperatures near 230 K were approximately 40 K too high to support ice particles at stratospheric water vapour pressures of a few ppmv. The isentropic back trajectory on 400 K showed the air parcels to have stayed clear of active major rocket launch sites. The air parcels at 400 K had travelled from the Aleutians across Canada and the Atlantic Ocean arriving above central Europe and then turned northward to pass over above the lidar station. Parcels at levels at ±25 K from 400 K had come from the pole and joined the 400 K trajectory path above eastern Canada. Apparently the cloud existed in a filament of air with an origin different from those filaments both above and below. Possibly the 400 K level air parcels had carried soot particles from forest wild fires in northern Canada or volcanic ash from the eruption of the Korovin Volcano in the Aleutian Islands. 相似文献
14.
The total ozone distribution in March 1997 showed very low values in the North Atlantic-European region, even lower than in the years before. A spatial pattern correlation between the zonally asymmetric part of total ozone and that of the 300 hPa surface geopotential of the Northern Hemisphere was applied to examine the spatial structure of the low ozone values and its dynamic dependence. A trend analysis in the North Atlantic-European region was carried out to determine to what extent the low March 1997 ozone values are related to the decadal change of meteorological parameters in the lower stratosphere, observed since the 1980s, in comparison to the interannual variability. The conclusion is that the very low ozone values above the North Atlantic-European region in March 1997 were mainly induced by dynamic processes, namely their decadal change as well as their interannual variability. 相似文献
15.
C. M. Hall 《Annales Geophysicae》2000,18(8):967-971
Strong wind shears may result in dynamic instability, often characterised by the Richardson number lying between zero and 0.25. The extent to which electric-field driven ion flow may induce such neutral wind shears is examined. Further, it is proposed that, in the ionosphere, it is possible for electric fields to drive ion winds such that the collisionally induced neutral air response may be comparable to viscous damping of neutral motion. We shall present an analogy to the Reynolds Number Re to quantify this effect. In the same way that Re may be used to evaluate the likelihood of a flow being turbulent, the analagous metric may also indicate where in the atmosphere plasma dynamics may be strong enough to destabilise the neutral dynamics. 相似文献
16.
On the basis of MEM spectrum analysis, the main planetary scale fluctuations formed in the lower ionosphere are studied over a period of 3–25 days during the CRISTA campaign (October-November 1994). Three dominant period bands are found: 3–5, 6–8 and 15–23 (mainly 16–18) days. For 7–8 and 16–18 day fluctuations, propagation was eastward with wave numbers K = 3 and K = 1, respectively. The magnitude of planetary wave activity in the mid-latitudes of the Northern Hemisphere during the CRISTA campaign seems to be fairly consistent with the expected undisturbed normal/climatological state of the atmosphere at altitudes of 80–100 km. 相似文献
17.
D. Pancheva P. Mukhtarov N. J. Mitchell A. G. Beard H. G. Muller 《Annales Geophysicae》2000,18(10):1304-1315
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4. 相似文献
18.
We study the relative importance of sea-land and mountain-valley thermal contrasts in determining the development of thermally forced mesoscale circulations (TFMCs) over a mountainous peninsula. We first analyse the energetics of the problem, and using this theory, we interprete the numerical simulations over Calabria, a mountainous peninsula in southern Italy. The CSU 3-D nonlinear numerical model is utilised to simulate the dynamics and the thermodynamics of the atmospheric fields over Calabria. Results show the importance of orography in determining the pattern of the flow and the local climate in a region as complex as Calabria. Analysis of the results shows that the energetics due to the sea-land interactions are more efficient when the peninsula is flat. The importance of the energy due to the sea-land decreases as the mountain height of the peninsula increases. The energy stored over the mountain gains in importance, untill it is released by the readjustment of the warm mountain air as it prevails over the energy released by the inland penetration of the sea breeze front. For instance, our results show that over a peninsula 100 km wide the energy over the mountain and the energy in the sea-land contrast are of the same order when the height of the mountain is about 700 m, for a 1500 m convective boundary layer (CBL) depth. Over the Calabrian peninsula, the energy released by the hot air in the CBL of the mountain prevails over the energy released by the inland penetration of the sea air. Calabria is about 1500 m high and about 50 km wide, and the CBL is of the order of 1500 m. The energy over the mountain is about four time larger than the energy contained in the sea-land contrast. Furthermore, the energetics increase with the patch width of the peninsula, and when its half width is much less than the Rossby radius, the MAPE of the sea breeze is negligible. When its half width is much larger than the Rossby radius, the breezes from the two opposing coastlines do not interact. Over Calabria peninsula, numerical simulations show that the flow is highly ageostrophic, and that the flow intensity increases from sunrise to reach its maximum in the afternoon but before sunset, which suggests that, in the late part of the day, the conversion of potential energy into kinetic energy is balanced by the dissipation. 相似文献
19.
This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL) during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain) experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain). This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT) and chisel ploughing (reduced tillage denoted RT). This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance), these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models. 相似文献
20.
The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations 总被引:6,自引:0,他引:6
By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region. 相似文献