首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-exchange fractionation of copper and zinc isotopes   总被引:5,自引:0,他引:5  
Whether transition element isotopes can be fractionated at equilibrium in nature is still uncertain. Standard solutions of Cu and Zn were eluted on an anion-exchange resin, and the isotopic compositions of Cu (with respect to Zn) of the eluted fractions were measured by multiple-collector inductively coupled plasma mass spectrometry. It was found that for pure Cu solutions, the elution curves are consistent with a 63Cu/65Cu mass fractionation coefficient of 0.46‰ in 7 mol/L HCl and 0.67‰ in 3 mol/L HCl between the resin and the solution. Batch fractionation experiments confirm that equilibrium fractionation of Cu between resin and 7 mol/L HCl is ∼0.4‰ and therefore indicates that there is no need to invoke kinetic fractionation during the elution. Zn isotope fractionation is an order of magnitude smaller, with a 66Zn/68Zn fractionation factor of 0.02‰ in 12 mol/L HCl. Cu isotope fractionation results determined from a chalcopyrite solution in 7 mol/L HCl give a fractionation factor of 0.58‰, which indicates that Fe may interfere with Cu fractionation.Comparison of Cu and Zn results suggests that the extent of Cu isotopic fractionation may signal the presence of so far unidentified polynuclear complexes in solution. In contrast, we see no compelling reason to ascribe isotope fractionation to the coexistence of different oxidation states. We further suggest that published evidence for iron isotopic fractionation in nature and in laboratory experiments may indicate the distortion of low-spin Fe tetrahedral complexes.The isotope geochemistry of transition elements may shed new light on their coordination chemistry. Their isotopic fractionation in the natural environment may be interpreted using models of thermodynamic fractionation.  相似文献   

2.
The fractionation of boron isotopes between synthetic dravitic tourmaline and fluid was determined by hydrothermal experiments between 400 and 700°C at 200 MPa and at 500°C, 500 MPa. Tourmaline was crystallized from an oxide mix in presence of water that contained boron in excess. In one series of experiments, [B]fluid/[B]tour was 9 after the run; in another series it was 0.1. All experiments produced tourmaline as the sole boron-bearing solid, along with traces of quartz and talc. Powder XRD and Rietveld refinements revealed no significant amounts of tetrahedrally coordinated boron in tourmaline. 11B always preferentially fractionated into the fluid. For experiments where [B]fluid/[B]tour was 9, a consistent temperature-dependent boron isotope fractionation curve resulted, approximated by Δ11B(tour–fluid) = −4.20 · [1,000/T (K)] + 3.52; R 2 = 0.77, and valid from 400 to 700°C. No pressure dependence was observed. The fractionation (−2.7 ± 0.5‰ at 400°C; and −0.8 ± 0.5‰ at 700°C) is much lower than that previously presented by Palmer et al. (1992). Experiments where [B]fluid/[B]tour was 0.1 showed a significant larger apparent fractionation of up to −4.7‰. In one of these runs, the isotopic composition of handpicked tourmaline crystals of different size varied by 1.3‰. This is interpreted as resulting from fractional crystallization of boron isotopes during tourmaline growth due to the small boron reservoir of the fluid relative to tourmaline, thus indicating larger fractionation than observed at equilibrium. The effect is eliminated or minimized in experiments with very high boron excess in the fluid. We therefore suggest that values given by the above relation represent the true equilibrium fractionations.  相似文献   

3.
Redox processes are ubiquitous in Earth science and are often associated with large isotope fractionations. In a previous study, voltage-dependent amplification of stable isotope fractionation was observed for an Fe reduction process. Here, we describe experiments showing a similar effect for a second transition metal, zinc. After electrochemical reduction, the composition of plated Zn metal is enriched in the light isotope (64Zn) with respect to the Zn2+ leftover in solution, with a voltage-dependent fractionation factor. Results from voltage-dependent electroplating experiments are in good agreement with a second data set following equilibrium fractional isotope evolution of Zn isotopes during an electroplating process which stepwise removes most of the Zn from the aqueous reservoir. Taken together, the results indicate a voltage-dependent isotope fractionation (in permil) of 66Zn with respect to 64Zn to be equal to −3.45 to 1.71 V. The negative slope trend is in contrast with previously published results on iron isotope fractionation during electroplating which shows a positive slope. These results are interpreted using an extension of Marcus theory, which predicts isotope fractionations as a function of driving force in an electrochemical system. Taken together with observations of natural fractionation of redox-sensitive and non redox-active elements, our modified Marcus theory provides a framework for quantitatively predicting transition metal isotope geochemical signatures during environmentally relevant redox processes in terms of simple energetic parameters.  相似文献   

4.
The variation of adsorption constants and isotope fractionation with pH and temperature during the adsorption of B from seawater onto marine clay have been examined. The controls over adsorption are similar to those exhibited by pure clay minerals (Bassett, 1976; Keren and Mezuman, 1981). The isotope fractionations are the result of equilibrium processes, not kinetic effects. Variations in the measured fractionation factor with pH arise from the differences between the isotope fractionation associated with adsorption of B(OH)3 and B(OH)4 and the pH dependence of B speciation. The implications of these results for the distribution of B isotopes in seawater and sediment porewaters are briefly discussed.  相似文献   

5.
《Chemical Geology》1992,94(4):315-319
In order to estimate the isotope fractionation effect between coals and methane during coalification a maturity-related fractionation model has been developed for coals and reservoir gases of NW Germany which is based on empirical data. Assuming that observed isotope shifts of the convertible carbon of coals of different maturities are related to a loss of methane during coalification and that this shift can be described by a Rayleigh distillation process, functions with preselected fractionation factors were fitted to measured isotope data of the convertible carbon of coals. The best approximation of theoretical and measured data was achieved with a low fractionation factor (αc= 1.003). Using this model theoretical methane carbon isotope data were determined and compared to the isotopic composition of reservoir methanes of NW Germany. Although the methane isotope data of reservoir gases and the related maturity of the coals show a slight scatter, the theoretical data plot within the same range and follow the increase of the 13C concentration of reservoir gases with increasing maturity of the coals.  相似文献   

6.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   

7.
The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ11B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO3, Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau.  相似文献   

8.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

9.
Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [FeIII(H2O)6]3+ and hematite at 98°C allows the equilibrium 56Fe/54Fe fractionation to be inferred, which we estimate at 103lnαFe(III)-hematite = −0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 106/T2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [FeIII(H2O)6]3+ and hematite based on vibrational frequencies and Mössbauer shifts by [Polyakov 1997] and [Polyakov and Mineev 2000], and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ∼12 h produces a kinetic isotope fractionation where 103lnαFe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by itself does not measurably fractionate Fe isotopes.  相似文献   

10.
High resolution δ13C and δ18O profiles recorded in precisely dated speleothems are widely used proxies for the climate of the past. Both δ13C and δ18O depend on several climate related effects including meteorological processes, processes occurring in the soil zone above the cave and isotope fractionation processes occurring in the solution layer on the stalagmite surface. Here we model the latter using a stalagmite isotope and growth model and determine the relationship between the stable isotope values in speleothem calcite and cave parameters, such as temperature, drip interval, water pCO2 and a mixing coefficient describing mixing processes between the solution layer and the impinging drop.The evolution of δ13C values is modelled as a Rayleigh distillation process and shows a pronounced dependence on the residence time of the solution on the stalagmite surface and the drip interval, respectively. The evolution of δ18O values, in contrast, is also influenced by buffering reactions between the bicarbonate in the solution and the drip water driving the δ18O value of the bicarbonate towards the value expected for equilibrium isotope fractionation between drip water and calcite. This attenuates the dependence of the δ18O values on drip interval. The temperature dependence of δ18O, however, is more pronounced than for δ13C and in a similar range as expected for fractionation under equilibrium conditions.We also investigate the isotopic enrichment of the δ13C and δ18O values along individual growth layers and, thus, the slopes expected for Hendy tests. The results show that a positive Hendy test is only possible if isotope fractionation occurred under disequilibrium conditions. However, a negative Hendy test does not exclude that isotope fractionation occurred under disequilibrium conditions. A more reliable indicator for disequilibrium fractionation is the enrichment of the δ13C values along an individual growth layer.  相似文献   

11.
The calcium isotopic compositions (δ44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (αs−f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of αs−f at equilibrium in the marine sedimentary section is 1.0000 ± 0.0001, which is significantly different from the value (0.9987 ± 0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ∼14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in δ44Ca of +0.15‰ for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.  相似文献   

12.
Equilibrium boron isotopic fractionations between trigonal B(OH)3 and tetragonal B(OH)4 aqueous species have been calculated at high P-T conditions using measured vibrational spectra (Raman and IR) and force-field modeling to compute reduced partition function ratios for B-isotopic exchange following Urey’s theory. The calculated isotopic fractionation factor at 300 K, α3/4 = 1.0176(2), is slightly lower than the formerly calculated value of α3/4 = 1.0193 (Kakihana and Kotaka, 1977), due to differences in the determined vibrational frequencies. The effect of pressure on α3/4 up to 10 GPa and 723 K is shown to be negligible relative to temperature or speciation (pH) effects. Implications for the interpretation of boron fractionation in experimental and natural systems are discussed. We also show that the relationship between seawater-mineral B isotope fractionation and pH can be expressed using two variables, α3/4 on one hand, and the pKa of the boric acid-borate equilibrium on the other hand. This latter value is given by the equilibrium of boron species in water for the carbonate-water exchange, but could be governed by mineral surface properties in the case of clays. This may allow defining intrinsic paleo-pHmeters from B isotope fractionation between carbonate and authigenic minerals. Finally, it is shown that fractionation of boron isotopes can be rationalized in terms of the changes in 1) coordination of B from trigonal to tetrahedral in both fluids and minerals; and 2) the ligand nature around B from OH in the fluid and some hydrous minerals to non-hydrogenated O in many minerals. Relationships are established that allow predicting the isotopic fractionation factor of B between minerals and fluid.  相似文献   

13.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   

14.
We report the results of an experimental calibration of oxygen isotope fractionation between quartz and zircon. Data were collected from 700 to 1000 °C, 10–20 kbar, and in some experiments the oxygen fugacity was buffered at the fayalite–magnetite–quartz equilibrium. Oxygen isotope fractionation shows no clear dependence on oxygen fugacity or pressure. Unexpectedly, some high-temperature data (900–1000 °C) show evidence for disequilibrium oxygen isotope partitioning. This is based in part on ion microprobe data from these samples that indicate some high-temperature quartz grains may be isotopically zoned. Excluding data that probably represent non-equilibrium conditions, our preferred calibration for oxygen isotope fractionation between quartz and zircon can be described by:
This relationship can be used to calculate fractionation factors between zircon and other minerals. In addition, results have been used to calculate WR/melt–zircon fractionations during magma differentiation. Modeling demonstrates that silicic magmas show relatively small changes in δ18O values during differentiation, though late-stage mafic residuals capable of zircon saturation contain elevated δ18O values. However, residuals also have larger predicted melt–zircon fractionations meaning zircons will not record enriched δ18O values generally attributed to a granitic protolith. These results agree with data from natural samples if the zircon fractionation factor presented here or from natural studies is applied.  相似文献   

15.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

16.
We determined the lithium isotope fractionation between synthetic Li-bearing serpentine phases lizardite, chrysotile, antigorite, and aqueous fluid in the P,T range 0.2–4.0 GPa, 200–500°C. For experiments in the systems lizardite-fluid and antigorite-fluid, 7Li preferentially partitioned into the fluid and Δ7Li values followed the T-dependent fractionation of Li-bearing mica-fluid (Wunder et al. 2007). By contrast, for chrysotile-fluid experiments, 7Li weakly partitioned into chrysotile. This contrasting behavior might be due to different Li environments in the three serpentine varieties: in lizardite and antigorite lithium is sixfold coordinated, whereas in chrysotile lithium is incorporated in two ways, octahedrally and as Li-bearing water cluster filling the nanotube cores. Low-temperature IR spectroscopic measurements of chrysotile showed significant amounts of water, whose freezing point was suppressed due to the Li contents and the confined geometry of the fluid within the tubes. The small inverse Li-isotopic fractionation for chrysotile-fluid results from intra-crystalline Li isotope fractionation of octahedral Li[6] with preference to 6Li and lithium within the channels (Li[Ch]) of chrysotile, favoring 7Li. The nanotubes of chrysotile possibly serve as important carrier of Li and perhaps also of other fluid-mobile elements in serpentinized oceanic crust. This might explain higher Li abundances for low-T chrysotile-bearing serpentinites relative to high-T serpentinites. Isotopically heavy Li-bearing fluids of chrysotile nanotubes could be released at relatively shallow depths during subduction, prior to complete chrysotile reactions to form antigorite. During further subduction, fluids produced during breakdown of serpentine phases will be depleted in 7Li. This behavior might explain some of the Li-isotopic heterogeneities observed for serpentinized peridotites.  相似文献   

17.
Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution-solid = δ65Cusolution − δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to −0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution-solid ranging from ∼+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable.  相似文献   

18.
The Si stable isotope fractionation between metal and silicate has been investigated experimentally at 1800, 2000, and 2200 °C. We find that there is a significant silicon stable isotope fractionation at high temperature between metal and silicate in agreement with Shahar et al. (2009). Further we find that this fractionation is insensitive to the structure and composition of the silicate as the fractionation between silicate melt and olivine is insignificant within the error of the analyses. The temperature-dependent silicon isotope fractionation is Δ30Sisilicate-metal = 7.45 ± 0.41 × 106/T2. We also demonstrate the viability of using laser ablation MC-ICPMS as a tool for measuring silicon isotope ratios in high pressure and temperature experiments.  相似文献   

19.
《Chemical Geology》2003,193(1-2):59-80
The increment method is applied to calculation of oxygen isotope fractionation factors for common magmatic rocks. The 18O-enrichment degree of the different compositions of magmatic rocks is evaluated by the oxygen isotope indices of both CIPW normative minerals and normalized chemical composition. The consistent results are obtained from the two approaches, pointing to negligible oxygen isotope fractionation between rock and melt of the same compositions. The present calculations verify the following sequence of 18O-enrichment in the magmatic rocks: felsic rocks>intermediate rocks>mafic rocks>ultramafic rocks. Two sets of internally consistent fractionation factors are acquired for phenocryst–lava systems at the temperatures above 1000 K and rock–water systems in the temperatures range of 0–1200 °C, respectively. The present calculations are consistent with existing data from experiments and/or empirical calibrations. The obtained results can be used to quantitatively determine the history of water–rock interaction and to serve geological thermometry for various types of magmatic rocks (especially extrusive rocks).  相似文献   

20.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号