首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the behavior of the inner motions of OH, H2CO, and CO molecular clouds. This study shows the existence of two main components of these clouds: the narrow one, associated to dense small clouds and a wide one representing the large diffuse clouds seen in neutral hydrogen, the large clouds are the vortex and intermediate state between turbulent and hydrodynamic motions in the Galaxy.For the dense clouds with sizesd<10 pc we have found a relationship d 0.38 consistent with the Kolmogorov law of turbulence; the densities and sizes of these clouds behave asnd –1. This last relation for these molecular clouds is compared with theHII one. Also, we discuss the effects of the inner magnetic field in these clouds.  相似文献   

2.
A statistical analysis of solar particle events, observed by the GSFC-UNH charged particle detector on board Pioneer 10 and Pioneer 11 from March 1972 to December 1974 (from 1 to 5 AU for each spacecraft), is carried out with the goal of experimentally determining the statistical average interplanetary propagation conditions from 3 to 30 MeV. A numerical propagation model is developed that includes diffusion with a diffusion coefficient of the form k r =k o r , convection, adiabatic deceleration, and a variable coronal injection profile. The statistical analysis is carried out by individually analyzing each of five parameters (t max, (tmax), t 5, ) that are uniquely defined in a solar particle event. Each of the five parameter data sets were analyzed in terms of both a spacecraft-solar flare connection longitude 50°, and a numerical model that employed a variable exponential decaying coronal injection profile.The five individual parameter analyses are combined with the results that the statistical average radial interplanetary diffusion coefficient from 1 to 5 AU is given by k r = (1.2 ± 0.4) × 1021 cm2 s-1 with = 0.0± 0.3 for 3.4 to 5.2 MeV protons and k r = (2.6 ± 0.6) × 1021 cm2 s-1 with () = 0.0± 0.3 for 24 to 30 MeV protons. Using the classical relationship for the radial scattering mean free path r, i.e. k r = r/3, we obtain r = 0.09 ± 0.03 AU and 0.075 ± 0.020 AU for the low and high energy data, respectively. These results show, from 1 to 5 AU and from 3 to 30 MeV, that r is both independent of radial distance and approximately independent of rigidity (for r~P , where P = rigidity, = -0.15 ± 0.20).The above diffusion coefficients are inconsistent With both the predictions of the diffusion coefficient from present theoretical transport models and with the diffusion coefficient used in modulation studies at low energies.  相似文献   

3.
Einstein's equations for a rotating pressure-free space-time are reduced to a system of four first-order non-linear ordinary differential equations in one self-similar dimensionless variable. Numerical results are given for the vacuum solution. A compatible thin disk can be specified by a surface density and an angular velocity . Self-similarity as a statement of the absence of scales implies that and can be written as=c 2/4Gr, =c/r, and demands that and be pure numbers.  相似文献   

4.
The study of uniformly polytropes with axial symmetry is extended to include all rotational terms of order 4, where is the angular velocity, consistently within the first post-Newtonian approximation to general relativity. The equilibrium structure is determined by treating the effects of rotation and post-Newtonian gravitation as independent perturbations on the classical polytropic structure. The perturbation effects are characterized by a rotation parameter = 2/2G c and a relativity parameter, =p c / c C 2 , wherep c and c are the central pressure and density respectively. The solution to the structural problem is obtained by following Chandrasekhar's series expansion technique and is complete to the post-Newtonian rotation terms of order 2. The critical rotation parameterv c , which characterizes the configuration with maximum uniform rotation, is accurately evaluated as a function of . Numerical values for all the structural parameters needed to determine the equilibrium configurations are presented for polytropes with indicesn=1, 1.5, 2, 2 5, 3, and 3.5.  相似文献   

5.
Observations of C100 and C125 atomic carbon recombination lines were made at the Algonquin Radio Observatory, towards the neutral interface separating theHii region DR21 (at RA=20h37m14s, Dec=+42°0900) from its associated molecular cloud. An analysis of the Cn observations in conjunction with a simple model of a neutral interface enabled the derivation of the following parameters: electron density of 300 cm–3, electron temperature of 30 K, microturbulent velocity of 2.3 km s–1, and depth of the neutral interface of 0.01 pc. A single,stimulated emission model is sufficient to reproduce the Cn observations in the wavelength range from 4.6 cm (C100) to 21 cm (C166). All the known Cn data do support a pressure equilibrium between the neutral interface and theHii region, after the usual allowance is made for carbon depletion on grains.  相似文献   

6.
On November 27, 1974, a map of the Moon was obtained at 6 cm wavelength with the 100-m-telescope in Effelsberg. The high angular and favourable temperature resolution allowed an interpretation of the observed brightness distribution. The dominant feature of the brightness distribution is the centre-to-limb variation, particularly noticeable in the direction of the poles. The exponent of the commonly adopted cos ()-law, describing the temperature variation across the lunar disk, is determined as 0.4. The North-South variation of the lunar surface temperature is estimated to be 30%; the depth of penetration (L e) of electromagnetic waves of 6 cm wavelength is found to beL e 17 m.  相似文献   

7.
Some peculiarities in the behaviour of a model self-gravitating system described by hydrodynamical equations and isothermal equation of state connected with the presence of thermodynamical fluctuations in real systems were investigated in numerical experiment. The values of density and velocity , , respectively, were computed by numerical code perturbed on each time-step and in each computational cell by random values , for modeling such fluctuations. Perturbed values i = i + i ,v i = i + v i were used to initiate the next step of computations. This procedure is equivalent to an introduction into original hydrodynamical equations of Langevin sources which are random functions. It is shown that these small fluctuations (= v =0,2 =v 2 = 10–8) grow many times in marginally-stable state.  相似文献   

8.
The paper represents the Earth's gravitational potentialV, outside a sphere bounding the Earth, by means of its difference V from the author's spheroidal potential. The difference V is in turn represented as arising from a surface density on the sphere bounding the Earth. Because of the slow decrease with ordern of the normalized coefficients in the spherical harmonic expansion ofV, the density anomalies from which the higher coefficients arise must occur in regions close to the Earth's surface. The surface density is thus an idealization of the product of the density anomaly and the crustal thicknessb. Values of are computed from potential coefficients obtained from two sources, Rapp and the Smithsonian Astrophysical Observatory. The two sources give qualitative agreement for the values of and for its contour map. The numerical values obtained for are compatible with the idea that the responsible density anomalies are reasonably small, i.e., less than 0.05 g/cm3, and occur in the crust alone.This paper was prepared under the sponsorship of the Electronics Research Center of the National Aeronautics and Space Administration through NASA Grant NGR 22-009-311.  相似文献   

9.
Résumé On étudie l'effet du champ magnétique terrestre sur le mouvement d'un satellite autour de son centre de gravité. Le satellite possède une symétrie dynamique et un moment magnétique propre dirigé suivant l'un des axes principaux d'inertie; le champ magnétique terrestre est assimilé au champ d'un dipôle dont les pôles coïncident avec les pôles terrestres. On néglige les perturbations de la trajectoire du satellite qui est supposée circulaire. La position du satellite par rapport à son centre de gravité est repérée dans un système d'axes lié au plan de l'orbite et le mouvement est décrit à l'aide des angles d'Euler , , . La symétrie sphérique et le choix du moment magnétique sur l'un des axes d'inertie permettent d'éliminer l'angle .La solution pour et peut se développer en séries de puissance d'un petit paramètre . Les séries convergent pour ||<1.Lorsque le moment magnétique est faible on la rotation du satellite rapide, est faible. Les développements sont calculés effectivement jusqu'à 2.La comparaison des résultats avec l'intégration numérique du système d'équations différentielles est satisfaisante.
The effect of the Earth's magnetic field on the motion of a satellite around its centre of mass is investigated. The satellite is assumed to be dynamically symmetric and to be magnetized in the same direction as that of a principal axis. The Earth's magnetic field is assumed to be a dipole field whose poles coincide with the rotation poles of the Earth. The satellite's orbit is circular and perturbations are neglected. The position of the satellite with respect to its centre of mass is given with respect to a coordinate system fixed in the orbital plane and the motion is described by Euler's angles , , . The spherical symmetry and the coincidence of the magnetic moment with a principal axis allow one to eliminate the angle .The solution for and , can be expanded in power series for small parameter .The series converge for <1. is small for a small magnetic moment or a high angular velocity of the rotating satellite. The terms of the expansion of the series are calculated up to 2.The comparison of the results with those obtained by numerical integration of the differential equation is satisfactory.
  相似文献   

10.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

11.
The relation between the amplitude of light m and the amplitude of the radial velocity 2K for Canis Majoris stars is investigated. A linear relationship between m and 2K is found. However, the two stars BW Vul and Sco, which have the largest radial velocity variations, do not seem to share this relationship.  相似文献   

12.
I give an interpretation of a result of Simpsonet al. (1988) on the variation with kinetic energyT i of the mean pathlengthX m (T i ) of the galactic cosmic rays (CGRs) in the range 0.1T i 10.0 GeV nucl–1. I argue that the data onX m (T i ) may be interpreted in terms of a model of GCR diffusion on the one-dimensional Alfvén-wave turbulence, having a cutoff in the spectrum at frequencies h , where h is the proton gyrofrequency. The cutoff results in changing of the character of variation of the GCR diffusion coefficientD(T i )T a in the rangeT i 1 GeV nucl–1 towards some more complicated variation at 0.1T i 1.0 GeV nucl–1 due to the peculiarities of the pitch-angle scattering at 900.  相似文献   

13.
R. Grant Athay 《Solar physics》1988,116(2):223-237
An attempt is made in this paper to determine the coefficient a in a power-law relationship of the form V ~T between the r.m.s. velocity fluctuation, V for raster images with 3 resolution and the temperature, T of line formation using SMM solar data. For T between 8000 and 105 K, the data suggest a best fit with 3/4 < 1. It is argued, however, that unresolved fine structure tends to reduce the observed value of V and that higher resolution data may yield different values for . Skylab data have shown that the non-thermal line broadening velocity, , is proportional to T 1/2. Also, for all temperatures less than 105 K, V . This latter result, however, is again dependent on spatial resolution and may not be true in observations made with sufficient spatial resolution. The magnitudes of both V and indicate that bulk motions play important roles in the structure of the solar atmosphere as well as in its energy and momentum balance. It is important, therefore, to identify the true nature of such motions with better accuracy than is possible with currently available data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
The Einstein Field Equations for homogeneous cosmologies are considered within the viscosity approximation. It is shown that some power laws T m (whereT is the temperature) for the cross-section lead to collisionless behavior near the initial singularity in a big bang model. Under some circumstances one may have two viscous phases, as the cosmic fluid passes from collisionless to collisional to collisionless again, while the universe expands.Research was sponsored in part by the Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Contract F33615-68-C-1675.  相似文献   

15.
The time evolution of the velocity dispersion as a function of radius, called v-profiles, of threeN-body simulations of Wielen are presented in units ofr/R G (whereR G is the gravitational or virial radius) and discussed as a function of mass sample. The evolution of the radial and tangential components of the velocity dispersion is discussed, and each v-profile is fitted to a simple power law in the halo (0.15r/R G2.0). Several structural features appear at late time intervals: (a) an upturn in the radial component of v which occurs in a decreasing shell (closer to the core) in time, (b) the v-profile of the massive particles mimics that of the total sample, since equipartition of kinetic energy does not obtain, and (c) a local minimum atr0.3–0.5R G appears in one model which coincides with the local minimum in the number density profiles and possibly with feature (a).The line-of-sight v-profile, called LS-profile, of each model as a function of time and mass sample are also presented and discussed. They contain the same structural features as the v-profiles. Projection factors at small radii are also discussed. The LS-profiles of the models can be compared with the observed velocity dispersion profiles of clusters of galaxies in Struble (1979a).  相似文献   

16.
The object of this paper is to investigate the behavior of a magnetic field in a viscous fluid cosmological model. It has been assumed that the expansion () is proportional to the eigenvalue 1 of the shear tensor i j and the coefficient of shearing viscosity is proportional to the scalar of expansion. The paper also discusses the behavior of the model when the magnetic field tends to zero and comments on some other physical properties.  相似文献   

17.
This work presents spectroscopic observations of Parsamian 21, which has been shown recently by Staude and Neckel to be a fuor-type star. A list of identified absorption lines is given. The results are compared with previous spectroscopic observations over the period 1966–1990. It is shown that the H line profile changed during this period; according to the observations of 1986, the center of the H absorption line was shifted by –140 km/sec from 0 and reached –600 km/sec at the line edge. It follows from the presented lightcurve that the star has undergone brightness variations of nearly three magnitudes and most likely became a fuor before 1902.Translated fromAstrofizika, Vol. 39, No. 2, pp. 227–235, April–June, 1996.  相似文献   

18.
Heating of the primaeval plasma prior to the epoch of recombination results in distortions in the Rayleigh-Jeans region of the microwave relic radiation spectrum (1–60 cm, or more exactly =2.5–7/8 cm). The present observational data allow limits to be set to such energy injection from which follow upper limits to (a) the amount of antimatter in the universe; (b) the parameters of primaeval turbulence; and (c) the adiabatic fluctuation spectrum for small masses (M<1011 M ).If the heating takes place prior to the epocht=101012/5 sec (and in particular at the annihilation of electron-positron pairs atT108–1010 K,t<300 sec), no observable distortions are expected in the relic radiation spectrum. Here =/crit is the dimensionless average density of matter in the universe.Translated from the Russian by D. F. Smith.  相似文献   

19.
An inhomogeneous model neutron star with a variable density profile of the type 0(r)=c[1–(2/3)r2/R2]exp(–r2/R2) is considered, where c is the central density, R is the star's radius, and is the inhomogeneity parameter in the radial mass distribution. This parameterization adequately reproduces the results of numerical evolutionary calculations of the density profile and enables one to obtain in analytical form the parameters of hydrostatic equilibrium and the eigenmodes of nonradial oscillations of a nonrotating neutron star, modeled by a spherical mass of incompressible, inviscid liquid. It is shown that a characteristic manifestation of the star's inhomogeneity is the presence of a stable dipole f-mode, the lowest one in the spectrum of natural oscillations. The presence of this mode serves as a general and primary criterion that evidently distinguishes all inhomogeneous hydrodynamic models from the homogeneous Kelvin model, in which the quadrupole mode is the lowest stable mode. Estimates obtained for the periods of nonradial pulsations coincide with the periods of micropulses observed in the average pulse profiles of c-pulsars. This suggests that the detected variations in emission intensity in the range of micropulse duration (on the order of 10–4 sec) are associated with nonradial stellar oscillations.Translated from Astrofizika, Vol. 39, No. 3, pp. 475–488, July–September, 1996.  相似文献   

20.
In this article the GEM (Brandenburg, 1992; Brandenburg, 1988) theory is applied to the problem of the cosmos in which most of the matter is hydrogen, spacetime is flat, and a Cosmic Background Radiation CBR field exists. Using the two postulates of the GEM theory: 1. That gravity fields are equivalent to an array ofE ×B drifts or a spacially varying Poynting field, such that spacetime is determined by EM fields so that the stress tensor of ultrastrong fields is self-canceling; 2. That EM and gravity fields and protons and electrons are unified at the Planck scale of lengths and energies and split apart to form distinct fields and separate particles at the Mesoscale of normal particle rest energies and classical radii. A new derivation is made of the formula forG found previously:G =e 2/(m p m e ) exp(-2R 1/2) = 6.668 × 10–8 dynes cm2 g–2wherem p andm e are the proton and electron masses respectively,R =m p /m e and is the fine structure constant, shows that quantum processes may occur which make the vacuum unstable to appearance of hydrogen thus allowing matter creation and a steady state universe to occur. The value for the Hubble Time calculated from this model isT o = (3/((2)(R 1/2)4))1/3(r e /c)(e 2/Gm p m e )= 19 Gyr wherer e =e 2 / (m e c 2)and follows the form first hypothesized by Dirac(1937). The CBR is traced to this process of matter creation and its temperature is calculated as beingT CBR = ((3/4)Gm e 2 c/( 2 o ))1/4 = 2.66K where is the Thomson cross section of the electron and o is the Stefan-Boltzman constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号