首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Asteroseismology studies stars with a wide variety of interior and surface conditions. For two decades asteroseismic techniques have been applied to many pulsating stars across the HR diagram. Asteroseismology is now a booming field of research with stunning new discoveries; I highlight a personal selection of these in this review, many of which are discussed in more detail elsewhere in these proceedings. For many years the Nainital-Cape Survey for northern roAp stars has been running at ARIES, so I emphasise new spectroscopic results for roAp stars and point out the outstanding prospects for the planned ARIES 3-m telescope at Devastai. High precision spectroscopy has revolutionised the asteroseismic study of some types of stars — particularly solar-like oscillators and roAp stars — while photometry is still the best way to study the frequency spectra that are the basic data of asteroseismology. New telescopes, new photometers and space missions are revolutionising asteroseismic photometry. In addition to the ground-based potential of asteroseismic spectroscopy, India has the knowledge and capability for space-based asteroseismic photometry. The future for asteroseismology is bright indeed, especially for Indian astronomers.  相似文献   

2.
D.W. Kurtz 《Solar physics》2004,220(2):123-135
With the resounding success of helioseismology in determining the interior structure and rotation of the Sun, and in providing unprecedented studies of the interaction of pulsation and magnetic fields in the solar atmosphere, astronomers have been delighted, after decades of disappointing attempts, with the recent discovery of solar-like oscillations in ξ Hya, β Hyi, α Cen A and B, η Boo, ν Ind, ζ Her, δ Eri, HD 20794, HD 160191, and others as this list is growing rapidly. There is now true seismology of some solar-like stars. Asteroseismology also studies stars with a wide variety of interior and surface conditions. For two decades asteroseismic techniques have been applied to many pulsating stars across the HR diagram. This review describes some recent developments for some selected classes of pulsating stars other than the solar-like oscillators.  相似文献   

3.
We give an overview of past and present efforts to make seismology of δ Scuti and γ Doradus stars possible. Previous work has not led to the observational detection and identification of a sufficient number of pulsation modes for these pulsators for the construction of unique seismic models. However, recent efforts including large ground-based observational campaigns, work on pre-main sequence pulsators, asteroseismic satellite missions, theoretical advances on mode identification methods, and the discovery of a star showing simultaneous self-excited δ Scuti and γ Doradus oscillations suggest that we may be able to explore the interiors of these pulsators in the very near future.  相似文献   

4.
There are now fully six classes of pulsators among white dwarfsand their immediate precursors among central stars of planetarynebulae and on the extended horizontal branch.In this review, we outline those observational and theoreticalconsiderations that link them together and set them apart fromother kinds of pulsating stars.We summarize some select astrophysical puzzles to which studiesof such pulsators might speak, and we discuss current applicationsin the fields of atomic, nuclear, and neutrino physics.Finally, we suggest how future observing programs might solve somegeneral problems common not only to the white dwarf and pre-whitedwarf pulsators but to many types of variable stars.  相似文献   

5.
The workshop took place at the beginning of what promises tobe a golden age of asteroseismology.Ground-based instrumentation is finally reaching a level of stabilitywhich allows detailed investigations of solar-like oscillations in atleast bright, slowly rotating main-sequence stars.Very extensive results are expected from the coming space missions,including data on a broad range of stars from the Eddington mission.The observational situation is therefore extremely promising.To make full use of these promises, major efforts are requiredtowards the efficient utilization of the data, through the developmentof techniques for the analysis and interpretation of the data.A broad range of topics related to these issues is discussed in the presentproceedings. Here I review some of the relevant problems,relate the asteroseismic investigations to broader areas of astrophysics and consider briefly the basis for our great expectations for the developmentof the field.  相似文献   

6.
In this short review we present the current observationalstatus of high mass pulsating stars.We give an overview of the results of the first asteroseismicstudies performed for some of the best known Cepheiand slowly pulsating B stars and discuss the asteroseismicpotential of these pulsators for future ground-and space-based data-sets.  相似文献   

7.
We briefly review the recent advances that have been made on the front of pulsating subdwarf B (sdB) stars. The first family of sdB pulsators, the EC 14026 stars, was discovered a few years ago and consists of short-period (~100?200 s) p-mode variables. The second type of pulsating sdB’s consists of the PG 1716+426 stars, a group of variables showing long-period (~1 h) g-mode pulsations. The existence of the latter was first reported less than a year ago. While the two types of sdB pulsators differ markedly in their observational characteristics, we recently found a unifying property in the sense that the observed modes in these objects are excited through the same driving process, a classic kappa mechanism associated with the radiative levitation of iron in the stellar envelope.  相似文献   

8.
Recent observational efforts and theoretical breakthroughs have encouraged the development of detailed asteroseismic analyses of rapidly oscillating sdB stars (the so-called EC14026 stars). This led to the first seismic determinations of the fundamental parameters that define the structure of EHB stars. We briefly review the current status of these analyses, discussing some of the properties of acoustic modes in EHB models that affect the asteroseismology of these stars. We then recall the basic ideas behind the method we developed in an attempt to objectively extract, from models, asteroseismic solutions suitable to any given sdB pulsator. A preliminary application of this method to the pulsating sdB star Feige 48 is also presented.  相似文献   

9.
We present the first results of an observational campaign aimed at detecting rapid extreme horizontal branch (EHB) pulsators in globular clusters. So far, we have observed multi-frequency luminosity variations for three EHB stars in ω Cen, with typical periods in the 100–120 s range. This is towards the short end, but comparable to, the periodicities measured for rapidly pulsating subdwarf B (sdB) stars in the field. Given that the effective temperatures of the variables discovered seem to be compatible with the instability strip for fast sdB pulsators, we believe we have uncovered the first such variables in a globular cluster.  相似文献   

10.
We review the question of the empirical and theoretical instabilityregions in the HR diagram for evolved, compact stars. These include thethree families of pulsating white dwarfs (g-mode pulsators excitedthrough mechanisms associated with partial ionization and convection inthe stellar envelope), the pulsating subdwarf B stars (p-mode variablesexcited through a classic kappa mechanism associated with the radiativelevitation of iron in the stellar envelope), and the `Betsy stars',the brand new class of long-period, g-mode pulsators of the subdwarf Btype discovered recently.  相似文献   

11.
During the course of an ongoing CCD monitoring program to investigate low-level light variations in subdwarf B (sdB) stars, weserendipitously discovered a new class of multimode pulsators withperiods of the order of an hour. These periods are a factor of tenlonger than those of previously known multimode sdB pulsators (EC14026 stars), implying the new pulsations are due to gravity modes rather than pressure modes. The iron opacity instability that drives the short period EC 14026 stars is effective in hot sdB's. Thelong period pulsators are found only among cooler sdB stars, wherethey are surprisingly common. The mechanism responsible for excitingthe deeper g-modes in cool sdB's is currently unknown, but thetemperature and gravity range in which these stars occur must be animportant clue. We present the first observational results for thisnew class of pulsating sdB stars, and discuss some possible implications.  相似文献   

12.
Linsky  Jeffrey L. 《Solar physics》1985,100(1-2):333-362
Major advances in our understanding of nonradiatively heated outer atmospheric layers (coronae, transition regions, and chromospheres) and other solar-like activity in stars has occurred in the past few years primarily as a result of ultraviolet spectroscopy from IUE, X-ray imaging from the Einstein Observatory, microwave detections by the VLA, and new optical observing techniques. I critically review the observational evidence and comment upon the trends with spectral type, gravity, age, and rotational velocity that are now becoming apparent. I define a solar-like star as one which has a turbulent magnetic field sufficiently strong to control the dynamics and energetics in its outer atmospheric regions. The best indicator of a solar-like star is the direct measurement of a strong, variable magnetic field and such data are now becoming available, but good indirect indicators include photometric variability on a rotational time scale indicating dark starspots and nonthermal microwave emission. X-rays and ultraviolet emission lines produced by plasma hotter than 104 K imply nonradiative heating processes that are likely magnetic in character, except for the hot stars where the heating is likely by shocks in the wind resulting from radiative instabilities. I conclude that dwarf stars of spectral type G-M and rapidly rotating subgiants and giants of spectral type F-K in spectroscopic binary systems are definitely solar-like. Dwarf stars of spectral type A7-F7 are almost certainly solar-like, and T Tauri and other pre-Main-Sequence stars are probably solar-like. Slowly rotating single giants of spectral type F to early K are also probably solar-like, and the helium-strong hottest Bp stars are interesting candidates for being solar-like. The O and B stars exhibit some aspects of activity but probably have weak fields and are not solar-like. Finally, the A dwarfs and the cool giants and supergiants show no evidence of being solar-like.Staff Member, Quantum Physics Division, National Bureau of Standards.  相似文献   

13.
Roger New 《Solar physics》2004,220(2):261-268
A brief review of observational full-disc helioseismology is carried out with emphasis on issues of interest in the developing field of seismology of Sun-like stars. The frequency precision obtained from extended full-disc helioseismic data sets and the activity cycle variation of solar p-mode parameters are summarised and related to recent and potential asteroseismic studies. The potential advantages of sharing approaches to the analysis of real and simulated data between helio- and astero-seismology groups are discussed.  相似文献   

14.
We are undertaking an extensive observational campaign of a number of non-radially pulsating stars using the high-resolution HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory. This is part of a large world-wide multi-site campaign to improve mode-identification techniques in non-radially pulsating stars, particularly for g-mode pulsators. This paper outlines our campaign and presents preliminary results for one γ Doradus star, HD 40745, and one β Cephei star, HD 61068. We have used a representative cross-correlation line-profile technique presented by Wright in 2008 to extract line profiles and these have then been analyzed using the FAMIAS package due to Zima published in 2006 to derive a spectroscopic mode identification.  相似文献   

15.
In this contribution, we explore some open questions about Extreme Horizontal Branch (EHB) stars in globular clusters. In particular, we present the current status of the search for rapid pulsators, He-depleted stars, and close binaries, three kind of objects very common among field EHB stars, but which first surveys failed to detect in clusters. We also analyze how the lack of cluster EHB binaries can reconcile with theoretical expectations. We give special attention to the first close EHB binary discovered in a globular cluster, whose characteristics point to a very rare or even unique object. Finally, we analyze some recent puzzling results about spectroscopically derived masses, that could point to the presence of two distinct families of EHB’s in clusters. For all these topics, we present the recent advancement in knowledge, the results requiring more investigation, and what has still to be done to fix the unsolved problems, showing the main points of our studies, the aims of our works, and what we expect to obtain from them.  相似文献   

16.
In the context of future space-based asteroseismic missions, we have studied the problem of extracting the rotation speed and the rotation-axis inclination of solar-like stars from the expected data. We have focused on slow rotators (at most twice solar rotation speed), first, because they constitute the most difficult case and, secondly, because some of the Convection Rotation and planetary Transits ( CoRoT ) main targets are expected to have slow rotation rates. Our study of the likelihood function has shown a correlation between the estimates of inclination of the rotation axis i and the rotational splitting δν of the star. By using the parameters, i and  δν=δν sin  i   , we propose and discuss new fitting strategies. Monte Carlo simulations have shown that we can extract a mean splitting and the rotation-axis inclination down to solar rotation rates. However, at the solar rotation rate we are not able to correctly recover the angle i , although we are still able to measure a correct  δν  with a dispersion less than 40 nHz.  相似文献   

17.
One of the most dramatic events in the life of a low-mass star is the He flash, which takes place at the tip of the red giant branch (RGB) and is followed by a series of secondary flashes before the star settles into the zero-age horizontal branch (ZAHB). Yet, no stars have been positively identified in this key evolutionary phase, mainly for two reasons: first, this pre-ZAHB phase is very short compared to other major evolutionary phases in the life of a star; and second, these pre-ZAHB stars are expected to overlap the loci occupied by asymptotic giant branch (AGB), HB, and RGB stars observed in the color-magnitude diagram (CMD). We investigate the possibility of detecting these stars through stellar pulsations, since some of them are expected to rapidly cross the Cepheid/RR Lyrae instability strip in their route from the RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a consequence of their very high evolutionary speed, some of these stars may present anomalously large period change rates. We constructed an extensive grid of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR Lyrae stars with high period change rates are found. Our results suggest that some—but certainly not all—of the RR Lyrae stars in M3 with large period change rates are in fact pre-ZAHB pulsators.  相似文献   

18.
Based on our radial-velocity measurements and on published photometric observations, we calculated the radii of 64 classical Cepheids that were previously assumed to be fundamental-mode pulsators. Our detailed analysis of the period-radius diagram shows that the sample of Cepheids with pulsation periods shorter than 9 days probably contains a significant fraction (up to 30%) of stars pulsating in the first overtone. This fact leads to incorrect luminosity estimates for Cepheids and may be partly responsible for the discrepancy between the short and long distance scales.  相似文献   

19.
The high performance photometric data obtained with space mission CoRoT offer the opportunity to efficiently constrain our models for the stellar interior of solar-like pulsating stars. On the occasion of the analysis of the oscillations of solar-like pulsator HD 49385, a G0-type star in an advanced stage of evolution, we revisit the phenomenon of the avoided crossings. Christensen-Dalgaard proposed a simple analogy to describe an avoided crossing between two modes. We here present an extension of this analogy to the case of n modes, and show that it should lead, in certain cases, to a characteristic behavior of the eigenfrequencies, significantly different from the n=2 case. This type of behavior seems to be observed in HD 49385, from which we infer that the star should be in a Post Main Sequence phase.  相似文献   

20.
We present the initial results of an abundance analysis of echelle UV spectra of five hot subdwarf B (sdB) stars. These stars have been identified as core helium burning objects on the extreme Horizontal Branch. Around 5% of sdBs show short-period acoustic-mode oscillations. Models predict that these oscillations are due to an opacity bump caused by the ionisation of iron group elements. The necessary metal abundance has to be maintained by diffusive equilibrium between gravitational settling and radiative levitation. However, analyses of high-resolution optical spectra has revealed that we cannot discriminate between pulsating and non-pulsating sdBs on the basis of the surface iron abundance. We have therefore obtained HST/STIS observations of three pulsators and two non-pulsators in the near- and far-UV to measure the surface abundance of elements that are unobservable from the ground. The overall aim of our study is to test diffusion and pulsation calculations by searching for significant differences between these surface abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号