首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 1012 K near the black hole), the electrons are also hot (∼109−10.5 K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.  相似文献   

2.
Deep observations with the Very Large Array of A0620–00, performed in 2005 August, resulted in the first detection of radio emission from a black hole binary at X-ray luminosities as low as 10−8.5 times the Eddington limit. The measured radio flux density, of  51 ± 7 μJy  at 8.5 GHz, is the lowest reported for an X-ray binary system so far, and is interpreted in terms of partially self-absorbed synchrotron emission from outflowing plasma. Making use of the estimated outer accretion rate of A0620−00 in quiescence, we demonstrate that the outflow kinetic power must be energetically comparable to the total accretion power associated with such rate, if it was to reach the black hole with the standard radiative efficiency of 10 per cent. This favours a model for quiescence in which a radiatively inefficient outflow accounts for a sizable fraction of the missing energy, and, in turn, substantially affects the overall dynamics of the accretion flow. Simultaneous observations in the X-ray band, with Chandra , confirm the validity of a non-linear radio/X-ray correlation for hard state black hole binaries down to low quiescent luminosities, thereby contradicting some theoretical expectations. Taking the mass term into account, the A0620−00 data lie on the extrapolation of the so-called Fundamental Plane of black hole activity, which has thus been extended by more than two orders of magnitude in radio and X-ray luminosity. With the addition of the A0620−00 point, the plane relation provides an empirical proof for the scale invariance of the jet-accretion coupling in accreting black holes over the entire parameter space observable with current instrumentation.  相似文献   

3.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

4.
We calculate the broad-band radio–X-ray spectra predicted by microblazar and microquasar models for ultraluminous X-ray sources (ULXs), exploring the possibility that their dominant power-law component is produced by a relativistic jet, even at near-Eddington mass accretion rates. We do this by first constructing a generalized disc–jet theoretical framework in which some fraction of the total accretion power, P a, is efficiently removed from the accretion disc by a magnetic torque responsible for jet formation. Thus, for different black hole masses, mass accretion rates and magnetic coupling strength, we self-consistently calculate the relative importance of the modified disc spectrum, as well as the overall jet emission due to synchrotron and Compton processes. In general, transferring accretion power to a jet makes the disc fainter and cooler than a standard disc at the same mass accretion rate; this may explain why the soft spectral component appears less prominent than the dominant power-law component in most bright ULXs. We show that the apparent X-ray luminosity and spectrum predicted by the microquasar model are consistent with the observed properties of most ULXs. We predict that the radio synchrotron jet emission is too faint to be detected at the typical threshold of radio surveys to date. This is consistent with the high rate of non-detections over detections in radio counterpart searches. Conversely, we conclude that the observed radio emission found associated with a few ULXs cannot be due to beamed synchrotron emission from a relativistic jet.  相似文献   

5.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

6.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

7.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

8.
Active galactic nuclei (AGNs) form two distinct sequences on the radio-loudness–Eddington ratio plane. The ‘upper’ sequence contains radio selected AGNs, the ‘lower’ sequence is composed mainly of optically selected AGNs. The sequences mark the upper bounds for the radio-loudness of two distinct populations of AGNs, hosted, respectively, by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the efficiency of jet production in AGNs. We speculate that this additional parameter is the spin of the black hole, assuming that black holes in giant elliptical galaxies have (on average) much larger spins than black holes in disc galaxies. Possible evolutionary scenarios leading to such a spin dichotomy are discussed. The galaxy-morphology related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars being hosted by giant ellipticals is radio-quiet. This indicates that the production of powerful jets at high accretion rates is in most cases suppressed and, in analogy to X-ray binary systems (XRB) during high and very high states, may be intermittent. Such intermittency can be caused by switches between two different accretion modes, assuming that only during one of them an outflow from the central engine is sufficiently collimated to form a relativistic jet.  相似文献   

9.
We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies. We describe the design of this study and present the images that have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ≃10 kpc, and R − K colours consistent with mature stellar populations. Most importantly, this is first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M R =−24 reside in massive ellipticals. This result removes the possibility that radio 'loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black hole/spheroid mass correlation recently highlighted by Magorrian et al. We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R -band luminosities suggests that the black holes in most of these galaxies are radiating at a few per cent of the Eddington luminosity; the brightest host galaxies in our low- z sample are capable of hosting quasars with M R ≃− 28, comparable to the most luminous quasars at z ≃3. Finally, we discuss our host-derived black hole masses in the context of the radio luminosity:black hole mass correlation recently uncovered for nearby galaxies by Franceschini et al., and consider the resulting implications for the physical origin of radio loudness.  相似文献   

10.
In this paper, we collect the redshift, bolometric luminosity, the full- width at half maximum of the Hβ emission line, the monochromatic luminosity at 5100 Å and the radio loudness for the sample of 117 quasars, including 20 radio-quiet quasars (RQQs) and 97 radio-loud quasars (RLQs). With the reverberation mapping method we calculate the black hole mass and Eddington ratio for this sample, as well as the radio luminosity from the total 5 GHz ?ux density. By analyzing the correlations among them, we obtain the following conclusions: (1) The black hole mass has weak correlations with the bolometric luminosity, radio loudness and radio luminosity for the RQQs, and has strong correlations with the bolometric luminosity, radio loudness and radio luminosity for the RLQs; (2) For the RQQs, the bolometric luminosity has weak correlations with the radio luminosity and 5 100 Å monochromatic luminosity, and for the RLQs, the bolometric luminosity has strong correlations with the radio luminosity and 5 100 Å monochromatic luminosity; (3) The RQQs and RLQs differ in the distributions of the black hole mass, emission line width and Eddington ratio. Based on these results, we suggest: the difference of emission line width between RQQs and RLQs is probably caused by the difference of black hole mass; the fundamental difference between RQQs and RLQs is caused by the difference of their intrinsic physical nature; the black hole mass, black hole spin, Eddington ratio, and host galaxy morphology are the important parameters to explain the origin of radio loudness and the double-peaked distribution; and the radio jet is closely related with the accretion rate of disk.  相似文献   

11.
Among the blazars detected by the Fermi satellite, we have selected the 23 blazars that in the 3 months of survey had an average γ-ray luminosity above 1048 erg s−1. For 17 out of the 23 sources we found and analysed X-ray and optical–ultraviolet data taken by the Swift satellite. With these data, implemented by archival and not simultaneous data, we construct the spectral energy distributions, and interpreted them with a simple one-zone, leptonic, synchrotron and inverse Compton model. When possible, we also compare different high-energy states of single sources, like 0528+134 and 3C 454.3, for which multiple good sets of multiwavelength data are available. In our powerful blazars the high energy emission always dominates the electromagnetic output, and the relatively low level of the synchrotron radiation often does not hide the accretion disc emission. We can then constrain the black hole mass and the disc luminosity. Both are large (i.e. masses equal or greater than  109 M   and disc luminosities above 10 per cent of Eddington). By modelling the non-thermal continuum we derive the power that the jet carries in the form of bulk motion of particles and fields. On average, the jet power is found to be slightly larger than the disc luminosity, and proportional to the mass accretion rate.  相似文献   

12.
We consider a model for quasar formation in which massive black holes are formed and fuelled largely by the accretion of hot gas during the process of galaxy formation. In standard hierarchical collapse models, objects about the size of normal galaxies and larger form a dense hot atmosphere when they collapse. We show that if such an atmosphere forms a nearly 'maximal' cooling flow, then a central black hole can accrete at close to its Eddington limit. This leads to exponential growth of a seed black hole, resulting in a quasar in some cases. In this model, the first quasars form soon after the first collapses to produce hot gas. The hot gas is depleted as time progresses, mostly by cooling, so that the accretion rate eventually falls below the threshold for advection-dominated accretion, at which stage radiative efficiency plummets and any quasar turns off. A simple implementation of this model, incorporated into a semi-analytical model for galaxy formation, overproduces quasars when compared with observed luminosity functions, but is consistent with models of the X-ray background, which indicate that most accretion is obscured. It produces few quasars at high redshift owing to the lack of time needed to grow massive black holes. Quasar fuelling by hot gas provides a minimum level, sufficient to power most quasars at redshifts between one and two, to which other sources of fuel can be added. The results are sensitive to feedback effects, such as might result from radio jets and other outflows.  相似文献   

13.
On the basis of Kang et al.’s semi-analytical model of galaxy formation and evolution, the joint formation and evolution of galaxies and their central massive black holes are studied. It is assumed that the activity of quasars is caused by merging of galaxies. Via the introduction of the mass accretion rate of black holes, the bolometric luminosity function of quasars with the redshifts in the region of 0 < z < 4.5 is ascertained. With the respective limitations of the three factors, i.e., the Eddington ratio, black-hole mass function and two-point correlation function, the luminosity function predicted by the model may coincide with observations in the entire range of luminosity. This result reveals that the constant Eddington ratio cannot well describe the accretion of black holes, so the Eddington ratio has to be increased with the redshift in a certain range of redshift. The major merging of galaxies is the effective mechanism of triggering the quasar activity, while the minor merging can merely affect the quasars with low and intermediate luminosities. Its effect on the high-luminosity quasars is very small. At the place of z=1, the quasars with extremely high luminosities possess more intense properties of clustering than other quasars.  相似文献   

14.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

15.
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z  = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝  v 5halo ∝  M 5/3halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift.  相似文献   

16.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

17.
We model the reflected spectrum expected from localized magnetic flares above an ionized accretion disc. We concentrate on the case of very luminous magnetic flares above a standard accretion disc extending down to the last stable orbit, and use a simple parametrization to allow for an X-ray-driven wind. Full disc spectra including relativistic smearing are calculated. When fitted with the constant-density reflection models, these spectra give both a low reflected fraction and a small linewidth as seen in the hard spectra from galactic black hole binaries and active galactic nuclei. We fit our calculated spectra to real data from the low/hard state of Nova Muscae and Cyg X-1 and show that these models give comparable χ 2 to those obtained from the constant-density reflection models, which implied a truncated disc. This explicitly demonstrates that the data are consistent either with magnetic flares above an ionized disc extending down to the last stable orbit around a black hole, or with non-ionized, truncated discs.  相似文献   

18.
We revisit the so-called 'blazar sequence', which connects the observed bolometric luminosity to the shape of the spectral energy distribution (SED) of blazars. We propose that the power of the jet and the SED of its emission are linked to the two main parameters of the accretion process, namely the mass of the black hole and the accretion rate. We assume (i) that the jet kinetic power is proportional to the mass accretion rate; (ii) that most of the jet dissipation takes place at a distance proportional to the black hole mass; (iii) that the broad line region exists only above a critical value of the disc luminosity, in Eddington units, and (iv) that the radius of the broad line region scales as the square root of the ionizing disc luminosity. These assumptions, motivated by existing observations or by reasonable theoretical considerations, are sufficient to uniquely determine the SED of all blazars. This framework accounts for the existence of 'blue quasars', i.e. objects with broad emission lines but with SEDs resembling those of low-luminosity high-energy peaked BL Lacertae (BL Lac) objects, as well as the existence of relatively low-luminosity 'red' quasars. Implications on the possible evolution of blazars are briefly discussed. This scenario can be tested quite easily once the AGILE and especially the GLAST satellite observations, coupled with information in the optical/X-ray band from Swift , will allow the knowledge of the entire SED of hundreds (and possibly thousands) blazars.  相似文献   

19.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

20.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号