首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Cadmium (Cd) accumulation and elimination were investigated in the tissues (gill, intestine, kidney, lever and muscle) of juvenile rockfish, Sebastes schlegeli, after sub-chronic dietary Cd exposure (0, 0.5, 5, 25 and 125 mg/kg). No mortality occurred during the sub-chronic exposure to dietary Cd. Specific growth rates of the rockfish estimated by weight and length were significantly different from those of the control, and a significant inverse relationship was observed between weight gain and the exposure concentration of dietary Cd at 25, 125 mg/kg. Cd accumulation in the tissues increased with exposure periods and concentrations for the 60 days of dietary Cd exposure. Cd accumulation in the intestine of rockfish was higher than other tissues, and the order of Cd accumulation in tissues were intestine>kidney approximately liver>gill>muscle. Accumulation factors showed an increase with the exposure period and an inverse relationship between the accumulation factor and the exposure concentrations in the gill, intestine, liver and muscle, but not in kidney. Cd elimination in tissues of rockfish decreased during the 30 days of depuration except kidney and muscle. Intestine showed the fastest elimination rates of Cd at all concentrations compared with other tissues.  相似文献   

2.
采用单因子实验设计方法,进行了饲料中添加维生素C对花鲈幼鱼生长(增重率、存活率、特定生长率、饲料效率)、免疫反应(血清中溶菌酶活性和血清总补体活性)和组织中维生素C积累量影响的研究。结果表明,随着饲料中维生素C添加量由0提高到98.9mg/kg,花鲈的增重率和特定生长率显著提高。以特定生长率为指标,花鲈最佳生长性能的饲料维生素C添加量为103.0mg/kg左右;饲料中维生素C添加量在0-98.9mg/kg时,花鲈幼鱼肌肉和肝脏中维生素C的积累量随饲料中维生素C的增加而显著增加(P〈0.05),花鲈幼鱼获得最大肝脏和肌肉中维生素C的积累量时,饲料中维生素C最低添加量为97.2mg/kg和105.0mg/kg;花鲈幼鱼血清溶菌酶和总补体活性随着维生素C添加量的增加而显著升高,维生素C添加量达到396.4mg/kg时,血清溶菌酶和总补体活性较高。综上所述,花鲈生长和免疫的维生素C适宜添加量为400mg/kg左右。  相似文献   

3.
采用静水生物测试方法,研究了Pb(0.5mg/L)和Cu(0.1mg/L)的相互作用对Cd(0.05mg/L)在泥鳅组织器官中蓄积的影响。结果表明,重金属离子相互作用对Cd在泥鳅组织器官中蓄积的影响与重金属的种类、数量、染毒时间及组织器官性质有关,Cd在泥鳅组织器官中的蓄积顺序为肝〉肾〉肌肉。研究发现,Cd在组织器官中...  相似文献   

4.
In order to correlate the expression of detoxifying enzyme genes and Cd accumulation in black sea bream, we analyzed four tissues (brain, gills, liver, and muscle) from black sea breams that were exposed to four different concentrations of Cd (0, 2, 13, and 25 mg/L) for various durations (0, 24, 48, 72, and 96 h). The highest level of Cd was accumulated in the liver, followed by the gills, brain, and muscle. The accumulation of Cd was significantly correlated with the duration of exposure and the concentration in brain, gill, and liver tissue, but not in muscle tissue, and the rate of accumulation increased with Cd concentration. The expression of metallothionein II (MT II) mRNA exhibited a similar pattern as Cd accumulation, especially in that the expression of MT II mRNA decreased in muscle tissue with increases in exposure duration. In contrast, the expression of cytochrome P450 1A (CYP1A) mRNA was highest in the liver, followed by brain, muscle, and gill tissues, and in gills and muscle tissue of Cd-exposed fish, the expression of CYP1A mRNA fell below that of the control fish. Overall, the liver of black sea bream was the most sensitive to Cd exposure, and the expression of MT II mRNA was 200-fold greater than the control fish. These findings indicate that the detoxification mechanisms of black sea bream are influenced by both MT II and CYP1A and that the genes participate in the detoxification of different tissues.  相似文献   

5.
The accumulation of 4-tert-octylphenol and the associated estrogenic effects were studied after a single pulse exposure to flounder Platichthys flesus. 4-tert-octylphenol was administered orally in a single dose of 50 mg kg(-1) and tissue (liver, muscle and testis) and plasma concentrations of 4-tert-octylphenol as well as plasma vitellogenin were measured 3, 6, 12, 18, 24, 48, 72, 144 and 216 h after administration of the dose. Concentrations of 4-tert-octylphenol in plasma and tissues were determined by Liquid Chromatography Mass Spectrometry (LC-MS). 4-tert-octylphenol was detectable in liver, testis, muscle and plasma 3h post administration and an accumulation was observed in liver, muscle and plasma up to 12 h and in testis 18 h post administration, respectively. The maximum concentrations of 4-tert-octylphenol in liver, muscle and testis were 67, 3.2 and 6.8 microg g(-1), respectively. An increase in plasma vitellogenin levels was seen 48 h post administration and the vitellogenin level continued to increase (from <100 ng ml(-1) to 1.4 mg ml(-1)) until the end of the experiment 9 days after the administration of 4-tert-octylphenol.  相似文献   

6.
铜在牙鲆(Paralichthys olivaceus)组织蓄积、分配及排放的研究   总被引:4,自引:1,他引:4  
采用暴露实验方法 ,研究了海水中Cu在牙鲆 (Paralichthysolivaceus)内脏、肌肉、鳃组织内吸收、积累和排放规律 ,海水中总有机碳 (TOC)浓度、配体种类对铜吸收的影响及其与海水表观络合容量 (ACuCC)的关系。结果表明 ,Cu浓度为 0 .5mg/L时 ,各组织内Cu蓄积量随暴露时间增加而增大 ,第 1 3天均达吸收平衡 ,此时Cu蓄积量 (mg/kg)为内脏 971 .89>肌肉 2 0 4 .99>鳃 90 .0 4。染毒 1 3天牙鲆在清洁海水中排放结果表明 :随排放时间增加各组织Cu蓄积量下降 ,第 8天接近排放平衡。此时各组织Cu排出率为 :肌肉 89% >鳃 86.5 % >内脏团 83.7%。海水中TOC浓度、种类对牙鲆Cu蓄积有明显影响 ,当TOC浓度相同时 ,孔石莼分泌物比牙鲆分泌物更能降低Cu在牙鲆组织内吸收和蓄积量 ;当TOC种类相同时 ,随TOC浓度升高 ,各组织铜蓄积量均明显下降 ,表明海水TOC能降低牙鲆组织对Cu的吸收和积累。ACuCC随TOC浓度增加有明显上升趋势 ,并与TOC浓度呈线性相关。  相似文献   

7.
The Bering Sea is an area of high biological productivity, with large populations of sea-birds, demersal and pelagic fishes, so it seemed desirable to assess the bioaccumulation of trace metals in the ...  相似文献   

8.
牙鲆对海水中铅积累排放规律研究   总被引:3,自引:0,他引:3  
研究了海水中铅在牙鲆内脏、肌肉、鳃组织中吸收、积累和排放规律及海水中总有机碳浓度对铅吸收的影响.结果表明,铅浓度为0.5mg/dm3时,各组织中铅蓄积量随暴露时间增加而增大,第9天均达到吸收平衡,此时铅蓄积量(mg/kg)内脏中的649.8大于鳃中的237.4大于肌肉中的59.71.染毒13d后将牙鲆移入清洁海水中排放的结果表明,随排放时间增加各组织中铅蓄积量明显下降,第10天时各组织中铅排出率为内脏团的84.85%大于鳃的61.26%大于肌肉的57.03%.海水中总有机碳浓度对铅蓄积量有明显影响,随着总有机碳浓度升高,各组织中铅蓄积量明显下降,表明海水总有机碳能降低铅的生物有效性.  相似文献   

9.
采用铜适量(4.47mg/kg)和铜过量(1127.51mg/kg)的两种饲料投喂初始体重为(12.9±0.2)g的斜带石斑鱼(Epinephelus coioides)8周,研究饲料中过量铜对斜带石斑鱼生长性能、形态学指标、体组成和鱼体微量元素含量的影响。结果表明,当饲料铜含量由4.47mg/kg升高到1127.51mg/kg时,斜带石斑鱼增重率由228%下降到63%,饲料效率由1.12下降到0.51,肠脂比由2.90%下降到1.69%。全鱼和肝脏中的铜含量均随饲料铜水平的增加而显著增加,斜带石斑鱼全鱼铜含量由2.98mg/kg上升到34.98mg/kg,肝脏铜含量由36.6mg/kg上升到1364.0mg/kg。但饲料中过量铜对斜带石斑鱼的存活率、鱼体肥满度、脏体比、肝体比和全鱼体组成没有显著性影响。摄食高铜饲料的斜带石斑鱼肝脏锌含量显著升高,锌可能在铜的解毒过程中起着重要的作用。  相似文献   

10.
采用室内暴露试验方法,以单细胞凝胶电泳技术(SCGE)检测,研究了Cu、Pb不同浓度梯度与不同暴露时间联合染毒对泥鳅卵细胞DNA的损伤.结果表明,各Cu、Pb浓度组DNA平均迁移长度增加,与阴性对照组比较差异有显著性(P<0.05).此外,随着Cu、Pb染毒剂量的增加,各试验组DNA的平均迁移长度逐渐增加,在试验浓度梯度范围内(Cu 0.01mg/L+Pb 0.05mg/L、Cu 0.10mg/L+Pb 0.50mg/L、Cu 0.25mg/L+Pb 0.75mg/L),存在较为显著的剂量-效应关系(P<0.05),但未见明显的时间-效应关系(P>0.05).Cu、Pb可引起泥鳅卵细胞凋亡和DNA损伤,卵细胞的不同损伤水平可望作为较为理想的水环境基因毒性指标.  相似文献   

11.
In order to simulate a possible natural administration route of xenoestrogens male flounder Platichthys flesus were exposed via the diet to the alkylphenol 4-tert-octylphenol. Treatment with 4-tert-octylphenol (10, 50 and 100 mg OP kg(-1) BW) or 17beta-estradiol (0.05 mg kg(-1) BW) every second day during a period of 11 days resulted in a significant increase in plasma vitellogenin (Vtg) concentrations. The induction of Vtg was greatest in the fish receiving 50 mg OP kg-' BW. A significant accumulation of 4-tert-octylphenol was found in liver and muscle tissue of the OP treated groups. The tissue concentrations of 4-tert-octylphenol and the plasma vitellogenin concentration were positively correlated. The results show that 4-tert-octylphenol accumulates in liver and muscles of flounder P. flesus, and exerts estrogenic effects such as vitellogenin induction.  相似文献   

12.
The purpose of this study was to determine the long-term accumulation of either silver or copper from low concentrations in seawater by blue mussels, Mytilus edulis. Mussels raised from eggs in the laboratory to the age of 2·5 months (approximately 4·5 mm in length) were continuously exposed to 0, 1, 5 and 10μg/liter of either silver (nitrate) or copper (chloride) and sampled at 12, 18 and 21 months for growth studies, measurements of metal accumulation and histopathological examination.Whole-body soft tissues were analyzed for the presence of both silver and copper, as background levels of copper in the incoming seawater averaged 2–4 μg/liter. Mussels exposed to silver had accumulated significant amounts of silver only at the highest test concentration (10 μg/liter Ag) after 12 months, but at 18 and 21 months significant levels were accumulated at all three test concentrations. Mussels exposed to copper accumulated significant amounts of copper at 5 and 10 μg/liter Cu after all three sampling periods, but not at 1μg/liter. Silver-exposed animals also accumulated significantly greater amounts of copper than control animals.In a comparative study, field-collected juvenile mussels (approximately 16·1 mm in shell length) and adult mussels (approximately 53·4 mm in shell length) were exposed for 12 months to 0, 5, 25 and 50 μg/liter silver only and subsequently sampled for metal-accumulation analyses and growth measurements. Juvenile mussels accumulated significant amounts of silver at all test concentrations, with the exception of mussels exposed to 5 μg/liter Ag for 6 months. Copper accumulation in the silver-exposed juveniles was significant only at 50 μg/liter Ag after 6 months, but at all test concentrations after 12 months. Adult mussels exposed to silver accumulated significant levels of both silver and copper, but at somewhat lower levels than juveniles.In the growth study, silver had no effect on laboratory reared mussels at the highest concentration of 10 μg/liter tested, whereas copper at 10 μg/liter did appear to affect growth as early as 4 months after the start of experimental exposure. Field-collected juvenile mussels did show inhibition in growth after 6 months' exposure to 25 and 50 μg/liter Ag, with some growth occurring after 12 months. Adults also showed inhibition in growth after 6 months but not at 12 months.Histopathological examination of mussels exposed to either 5 or 10 μg/liter of copper for 18 months showed changes in the digestive diverticula, gastrointestinal tract, reproductive tract and muscle tissues. These changes were more noticeable in mussels exposed to 5 μg/liter Cu than in those exposed to 10 μg/liter. Mussels exposed to silver for 21 months showed yellowish to black particulate deposition in the basement membrane and connective tissue of the various organs and tissues. Silver deposition increased with increasing test concentration.  相似文献   

13.
为研究南极大磷虾(Euphausia superba)粉对点带石斑鱼幼鱼氟蓄积和生长的影响,作者通过饲养点带石斑鱼(Epinephelus malabaricus)幼鱼(初始体质量为(3.50±0.30)g,体长(5.5±0.3)cm)100 d,在基础日粮中添加0%(对照组)、2%、4%和6%的南极大磷虾粉制成4组饲料,饲料中氟质量分数分别为145.81、202.71、257.53和317.60 mg/kg。结果显示:南极大磷虾粉中的氟在点带石斑鱼幼鱼组织中的分布程度,以脊椎骨和鳃中为最高,氟质量分数分别为(58.020~114.380)mg/kg和(46.029~123.874)mg/kg,其次是皮(含鳞片)((44.127~88.761)mg/kg),再次是肝((7.654~18.248)mg/kg),而肌肉中氟蓄积最低((3.352~3.999)mg/kg);脊椎骨、皮(含鳞片)和鳃中氟含量随饲养时间的延续而产生蓄积,且与饲料中南极大磷虾粉的水平呈正相关,肝中氟含量随饲养时间延续而产生蓄积,但与南极大磷虾粉的水平无相关性,肌肉中氟含量与饲养时间和南极大磷虾粉水平均无相关性;100 d时,4%组和6%组的特定生长率处于最高水平,且显著高于对照组(P0.05)。本研究表明在饲料中添加4%~6%南极大磷虾粉,对点带石斑鱼幼鱼生长具有明显的促进作用。  相似文献   

14.
The effects of three heavy metals Copper (Cu), lead (Pb) and zinc (Zn), and the interaction of an essential (Zn) and non-essential (Pb) metal on germination, growth, and accumulation of metals in the grey mangrove, Avicennia marina (Forsk.) Vierh var. australasica (Walp.) Moldenke, were studied under laboratory conditions. Avicennia marina was found to be highly tolerant to the metals applied. Copper was accumulated in root tissue in a linear relationship at lower sediment concentrations, but at concentrations of 200 microg/g and higher, no further increases in root Cu levels occurred. Translocation of Cu from the root to leaf tissue was low, yet revealed similar accumulation patterns as root tissue. Significant reductions in seedling height leaf number and area were found with significant increases in Cu concentrations in tissues at 100 microg/g sediment Cu. At Cu sediment levels of 400 microg/g, a decrease in total biomass and root growth inhibition was observed. Emergence was retarded with increasing copper concentration, with 800 microg/g sediment Cu resulting in a total inhibition of emergence. The LC50 for emergence and EC50 for biomass was 566 and 380 microg/g Cu respectively. Lead accumulation in root tissue was lower that other metals, yet increased in a dose dependant fashion across the sediment Pb concentration range examined. Lead was excluded from leaf tissue at Pb sediment concentrations up to 400 microg/g, above which limited transport of Pb occurred. Little negative effects on growth were observed due to the low accumulation of Pb. Zinc uptake was high, and was accumulated in a linear fashion in root tissue across the sediment Zn concentration range applied. Zinc translocation to leaf tissue exhibited a dose dependant relationship with both root and sediment Zn levels. Emergence decreased with increasing sediment Zn concentrations, with 1000 microg/g sediment Zn showing 100% mortality. Significant reductions in seedling height, leaf number, area, biomass and root growth inhibition were found at concentrations of 500 microg/g sediment Zn. The LC50 for emergence and EC50 for biomass was 580 and 392 microg/g Zn respectively. Lead and Zn in combination resulted in an increased accumulation of both metals in leaf tissue and increased toxicity than individual metals alone, and is the first noted occurrence of a Pb and Zn additive response in angiosperms. Possible mechanisms of accumulation and toxicity are discussed.  相似文献   

15.
Juvenile grey mullet (Chelon labrosus) were fed either a basal (4.4 mg Cu/kg dry wt) or high-Cu diet (2400 mg Cu metal/kg dry wt) for 10 weeks to assess the relationship between growth and Cu-induced oxidative damage. No mortalities were observed, but growth rate and food intake were reduced by 43 and 29%, respectively, in the high-Cu group. This was not only attributed to peroxidative damage of the food which reduced food intake (palatability), but also to direct effects of hepatic lipid peroxidation. Hepatic α-tocopherol concentrations were 63% lower, while malondialdehyde (MDA) increased by 304% in mullet fed a high-Cu diet for 67d. Cu-exposure reduced apparent α-tocopherol retention by 420%. Hepatic Fe and Zn levels fell, while Cu increased (p < 0.05). The results show that oral Cu exposure induces oxidative stress in grey mullet. Quantification of lipid peroxidation (rancidity) in the food, reflecting palatability, is essential to differentiate the direct toxic effects of Cu on growth from the secondary influences of reduced food intake.  相似文献   

16.
In order to examine the accumulation pattern of organotin compounds (OTs) accompanying the migration pattern in diadromous fish, tributyltin (TBT) and triphenyltin (TPT) compounds and their derivatives were determined in the liver, muscle, gill, and ovary tissues of both sea-run and freshwater-resident masu salmon, which are of the same species, Oncorhynchus masou. Their migratory histories were estimated using strontium (Sr) and calcium (Ca) analysis in the otolith. A significant difference in the mean Sr:Ca ratio from the core to the edge of the otolith was found between sea-run and freshwater-resident masu salmon. The TBT concentration in the liver was significantly higher than that in the other tissues in both sea-run and freshwater-resident fishes. In sea-run masu salmon, the TBT concentrations in all tissues except for the ovary were significantly higher than in those of freshwater-resident individuals. In the sea-run type, the percentage of TBT was higher than that of the freshwater-resident type. The TPT concentration in the liver of the sea-run type was also significantly higher than that in the other tissues, while that in the gill of the freshwater-resident type was significantly higher than that in the other tissues except for the ovary. The TPT concentrations found in the liver and muscle of the sea-run type were significantly higher than those in the freshwater-resident type, whereas the values of the gill in the sea-run type were significantly lower than those in the freshwater-resident fish examined. The percentage of TPT in the sea-run type was higher than that of the freshwater-resident type. These results suggest that the sea-run O. masou has a higher ecological risk of TBT and TPT exposure than the freshwater-residents during their life history.  相似文献   

17.
In the present study the induction of metallothioneins (MTs) and its relation to cytosolic metal concentrations (Zn, Cu and Cd) in the euryhaline crustacean Neomysis integer exposed to Cd at different salinities was studied. N. integer was exposed to the same free cadmium ion activity of 5.74 x 10(-9) mol l(-1) (i.e. 1/5 of the 96 h LC(50) value expressed as cadmium activity) in hypo-osmotic (5 psu), isosmotic (16 psu) and hyper-osmotic media (25 psu) for 7 days. In this way, the effect of salinity on cadmium speciation was eliminated and therefore the physiological effect of salinity on Cd accumulation and MT induction could be studied. The accumulation of cytosolic Cd in N. integer changed with salinity from 1.11+/-0.05 micromol l(-1) at 5 psu up to 1.43+/-0.17 micromol l(-1) at 25 psu. This could indicate that the physiological response of euryhaline estuarine invertebrates like N. integer to salinity changes can influence the rate of trace metal uptake from solution. While the salinity changes did not cause significant differences in cytosolic Zn concentrations (mean value of all tested salinities: 34.4+/-2.8 micromol l(-1)), an inverse relationship between salinity and cytosolic Cu concentration was observed. The highest concentration of 15.7+/-2.3 micromol Cul(-1) was determined at 5 psu and the lowest 10.9+/-1.4 micromol Cul(-1) at 25 psu. This could point to a possible relationship between the copper concentration and the hemocyanin metabolism in N. integer. This is the first time that differential pulse voltammetry method was applied to MT assays with N. integer. Although the exposure to Cd resulted in a higher Cd cytosolic concentration, no subsequent MT increase was detected. The significant positive correlation between MT levels and cytosolic Cu concentrations (Spearman correlation coefficient r(s)=0.356, p=0.009) implies a strong relationship between MT and Cu in N. integer.  相似文献   

18.
Heavy metal concentrations in the surface sediments of specially managed Ulsan Bay were investigated to determine metal distribution, pollution status and its ecological risk using pollution indices (enrichment factor and geo-accumulation index), potential ecological risk index and sediment quality guidelines (SQGs). The order of mean concentration (mg/kg) of metals was Zn (361.9) > Cu (95.6) > Pb (90.7) > Cr (64.7) > Ni (32.2) > Co (16.6) > As (15.8) > Cd (0.40) > Hg (0.16) in sediments of Ulsan Bay. Spatial distribution of metals in sediments showed a significantly higher concentration near industrial complexes, indicating that metal pollution is caused by anthropogenic sources. The results of enrichment factor (EF) and geo-accumulation index (Igeo) showed that sediments were significantly accumulated with Cu, Zn, As, Cd, Pb and Hg, indicating moderate to very severe enrichment (pollution) by these metals. Based on the potential ecological risk index, Hg and Cd posed a very high and a considerable potential ecological risk. Cu and As posed a moderate potential ecological risk, while, other metals (Cr, Co, Ni, Zn and Pb) rarely posed any potential ecological risk to the coastal environments. The sediments in Ulsan Bay showed a very high level of ecological risk, dominated by Hg and Cd. Metal concentrations in sediments were 80% for Cu, 96.7% for Zn, 50% for As, 70% for Pb and 50% for Hg above the threshold effects level (TEL), respectively.  相似文献   

19.
同安湾表层沉积物重金属污染特征及潜在生态风险评价   总被引:2,自引:0,他引:2  
对厦门同安湾表层沉积物7种重金属(Hg、Cd、Pb、As、Cu、Zn和Cr)、有机碳和硫化物含量进行了相关性分析和因子分析,并应用沉积物质量评价标准及潜在生态危害指数法对重金属的潜在生态风险进行了评价.结果表明:Cu、Pb、Zn、Cd、Cr、Hg、As含量范围和均值分别为6.49~46.20,16.95;6.68~46.90,23.93;45.4~162.0,87.4;0.028 9~0.402 0,0.147 6;8.50~33.20,15.95;0.013~0.117,0.047和1.5~6.8,4.8mg/kg.除As之外,各重金属含量之间有显著的相关性(相关系数为0.666~0.970),且与有机碳含量的相关系数较高(相关系数为0.674~0.980).重金属元素及有机碳与硫化物含量的相关系数较低.潜在生态风险评价显示:该海区沉积物中重金属生物毒性效应频繁发生的几率相对较小,生态危害程度也较低,尚属轻微生态危害.7种重金属潜在生物毒性风险大小依次为:Hg〉Cd〉Pb〉As〉Cu〉Zn〉Cr.  相似文献   

20.
应用双箱动力学模型模拟了刺参在Pb、Zn、Cu、Cd、Cr、Hg和As 7种重金属混合暴露条件下,呼吸树、消化道和体壁组织对重金属的生物富集与释放实验。结果表明:(1)重金属在刺参组织器官中的富集具有选择性,理论平衡状态下,As、Cd、Cr在各组织的含量分布(CAmax):呼吸树消化道体壁,Cu、Zn分布规律(CAmax):消化道呼吸树体壁,Hg、Pb分布规律(CAmax):体壁呼吸树消化道。(2)刺参对不同重金属的富集系数存在显著差异(P0.05),呼吸树组织对Cr离子富集系数最高2298.2,其次是Cu、Cd离子,其BCF均在1500以上,Hg、Pb、Zn和As离子在呼吸树中的富集系数较低。体壁对Cu离子的富集系数最高为1560.7,对As离子富集系数最低52.7。消化道对Cu离子富集系数最高6037,对As离子富集系数最低为87.9。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号