首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thunderstorms are of much importance in tropics, as this region is considered to have central role in the convective overturn of the atmosphere and play an important role in rainfall activity. It is well known that El Niño and La Niña are well associated with significant climate anomalies at many places around the globe. Therefore, an attempt is made in this study to analyze variability in thunderstorm days and rainfall activity over Indian region and its association with El Niño and La Niña using data of thunderstorm day’s for 64 stations well distributed all over India for the period 1981–2005 (25 years). It is seen that thunderstorm activity is higher and much variable during pre-monsoon (MAM) and southwest monsoon (JJAS) than the rest of the year. Positive correlation coefficients (CCs) are seen between thunderstorms and rainfall except for the month of June during which the onset of the southwest monsoon sets over the country. CCs during winter months are highly correlated. Composite anomalies in thunderstorms during El Niño and La Niña years suggest that ENSO conditions altered the patterns of thunderstorm activity over the country. Positive anomalies are seen during pre-monsoon (MAM) and southwest monsoon months (JAS) during La Niña years. Opposite features are seen in southwest monsoon during El Niño periods, but El Niño favors thunderstorm activity during pre-monsoon months. There is a clear contrast between the role of ENSO during southwest monsoon and post-monsoon on thunderstorm activity over the country. Time series of thunderstorms and precipitation show strong association with similarities in their year-to-year variation over the country.  相似文献   

2.
The objective of research done in this study is to examine the variability of the length of day (LOD) and to investigate its correlation with ENSO (El Niño-Southern oscillation) episodes. For this purpose, the LOD time series (1962–2015), from the International Earth Rotation and Reference Systems Service (IERS), is investigated using the Singular Spectrum Analysis (SSA) technique. The results show that the LOD time series is very complex and is composed of several components: the long-term trend explains 95.97% of the original series, the annual harmonic 1.76% and the semi-annual 1.35%. Considering sea surface temperature anomalies (SSTA) index over the Niño3, Niño4 and Niño3.4 regions, Southern Oscillation Index (SOI) and Multivariate ENSO Index (MEI), the residuals signal, that represents only 0.92% of the initial LOD series, indicate a significant correlation with ENSO occurred during 1965–66, 1972–73, 1982–83 and 1997–98 El Niño events and 1970–71, 1973–74, 1988–89, 2007–08, 2010–11 La Niña ones. This is a pertinent result that suggests that LOD variability is at least partly related to ENSO phenomena.  相似文献   

3.

We analyze autocorrelations and power spectra of the time series of monthly mean data characterizing sea surface temperature anomalies in the equatorial Pacific in the years 1920–2013 and show that the rhythms of El Niño–Southern Oscillation can be interpreted as the responses of the climate system to the external quasi-periodic forcing generated by the motions of the Earth’s pole. We conclude that the ENSO phenomenon has no prediction limits.

  相似文献   

4.
The importance of the El Niño-Southern Oscillation (ENSO) on regional-scale climate variability is well recognized although the associated effects on local weather patterns are poorly understood. Little work has addressed the ancillary impacts of climate variability at the community level, which require analysis at a local scale. In coastal communities water quality and public health effects are of particular interest. Here we describe the historical influence of ENSO events on coastal water quality in Tampa Bay, Florida (USA) as a test case. Using approximate randomized statistics, we show significant ENSO influences on water quality particularly during winter months, with significantly greater fecal pollution levels during strong El Niño winters and significantly lower levels during strong La Niña winters as compared to neutral conditions. Similar significant patterns were also noted for El Niño and La Niña fall periods. The success of the analysis demonstrates the feasibility of assessing local effects associated with large-scale climate variability. It also highlights the possibility of using ENSO forecasts to predict periods of poor coastal water quality in urban region which local agencies may use to make appropriate prepations.  相似文献   

5.
Trends of pre-monsoon, monsoon and post-monsoon rainfall pattern were studied on decadal basis over different homogeneous monsoon regions in India for the period 1871–2008. It is attempted to understand the relation of monsoon rainfall with the global teleconnections of El Niño and La Niña, for which the correlation analysis has been carried out with Darwin pressure and Niño 3.4 sea surface temperature (Niño 3.4 SST). The correlation analysis inferred that the significant correlations were observed when monsoon rainfall is related to ENSO indices on decadal scale than on annual ones. The study also found that the north-west region is more affected by the moderate El Niño years compared to strong El Niño years. The regions Central North-East and North-East could not make any difference among weak, moderate and strong La Niña events. The authors also have carried out the extreme value analysis over different homogeneous monsoon regions of India as well as for whole India. The results show that the return values of rainfall are increasing with the return periods for the forthcoming 10, 20, 50 and 100 years. The heterogeneity in number of threshold years that were recorded for the extreme rainfall over north-east (humid climatic type) and north-west (arid climatic type) described the climate variability. The results of the present study may be useful for the policy makers in understanding the rainfall exceedance in different return periods for planning the risk management strategies.  相似文献   

6.
Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann–Kendall and Sen’s Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.  相似文献   

7.
ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact over the tropical Atlantic and the Indian Ocean through Walker circulation. ENSO-induced negative (positive) NAO-like response and associated changes over Southern Europe and North Africa get significantly strong following increased intensity of El Niño (La Niña) in the northern (southern) hemisphere in the boreal winter (summer) season. We further find that ENSO magnitude significantly impacts Hadley and Walker circulations. The positive phase of ENSO (El Niño) overall strengthens Hadley cell and a reverse is true for the La Niña phase. ENSO-induced strengthening and weakening of Hadley cell induces significant impact over South Asian and African ITCZ convective regions through modification of ITCZ/monsoon circulation system.  相似文献   

8.
The effects of rainfall and the El Niño Southern Oscillation (ENSO) on groundwater in a semi-arid basin of India were analyzed using Archimedean copulas considering 17 years of data for monsoon rainfall, post-monsoon groundwater level (PMGL) and ENSO Index. The evaluated dependence among these hydro-climatic variables revealed that PMGL-Rainfall and PMGL-ENSO Index pairs have significant dependence. Hence, these pairs were used for modeling dependence by employing four types of Archimedean copulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and Frank. For the copula modeling, the results of probability distributions fitting to these hydro-climatic variables indicated that the PMGL and rainfall time series are best represented by Weibull and lognormal distributions, respectively, while the non-parametric kernel-based normal distribution is the most suitable for the ENSO Index. Further, the PMGL-Rainfall pair is best modeled by the Clayton copula, and the PMGL-ENSO Index pair is best modeled by the Frank copula. The Clayton copula-based conditional probability of PMGL being less than or equal to its average value at a given mean rainfall is above 70% for 33% of the study area. In contrast, the spatial variation of the Frank copula-based probability of PMGL being less than or equal to its average value is 35–40% in 23% of the study area during El Niño phase, while it is below 15% in 35% of the area during the La Niña phase. This copula-based methodology can be applied under data-scarce conditions for exploring the impacts of rainfall and ENSO on groundwater at basin scales.  相似文献   

9.
The intraseasonal tropical variability (ITV) patterns in the tropical troposphere are documented using double space-time Fourier analysis. Madden and Julian oscillations (MJO) as well as equatorial coupled waves (Kelvin and Rossby) are investigated based on the NCEP/NCAR Reanalysis data for the 1977–2006 period and the outputs of an intermediate ocean-atmosphere coupled model named LODCA-OTCM. A strong seasonal dependence of the ITV/ENSO relationship is evidenced. The leading relationship for equatorial Rossby waves (with the correlation of the same order than for the MJO) is documented; namely, it is shown that intensification of Rossby waves in the central Pacific during boreal summer precedes by half a year the peak of El Niño. The fact that MJO activity in spring-summer is associated to the strength of subsequent El Niño is confirmed. It is shown that LODCA-QTCM is capable of simulating the convectively coupled equatorial waves in outgoing long wave radiation and zonal wind at 850 hPa fields with skill comparable to other Coupled General Circulation Models. The ITV/ENSO relationship is modulated at low frequency. In particular the periods of low ENSO amplitude are associated with weaker MJO activity and a cancellation of MJO at the ENSO development phase. In opposition, during the decaying phase, MJO signal is strong. The periods of strong ENSO activity are associated with a marked coupling between MJO, Kelvin and equatorially Rossby waves and ENSO; the precursor signal of MJO (Rossby waves) in the western (central) Pacific is obvious. The results provide material for the observed change in ENSO characteristics in recent years and question whether the characteristics of the ITV/ENSO relationship may be sensitive to the observed warming in the central tropical Pacific.  相似文献   

10.
Towards understanding the unusual Indian monsoon in 2009   总被引:1,自引:0,他引:1  
The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfall of 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Niño and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Niño led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Niño. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Niño.  相似文献   

11.
Sum probability analysis of 1275 radiometric ages from 608 archaeological sites across northern and central Australia demonstrates a changing archaeological signature that can be closely correlated with climate variability over the last 2 ka. Results reveal a marked increase in archaeological records across northern and central Australia over the last 2 ka, with notable declines in western and northern Australia between ca. AD 700 and 1000 and post‐AD 1500 – two periods broadly coeval with the Medieval Climatic Anomaly and the Little Ice Age as they have been documented in the Asia–Pacific region. Latitudinal and longitudinal analysis of the dataset suggests the increase in archaeological footprint was continent wide, while the declines were greatest from 9 to 20° S, 110 to 135° E and 143 to 150° E. The change in the archaeological data suggests that, combined with an increase in population over the late Holocene, a disruption or reorganisation of pre‐European resource systems occurred across Australia between ca. AD 700 and 1000 and post‐AD 1500. These archaeological responses can be broadly correlated with transitions of the El Niño–Southern Oscillation (ENSO) mean state on a multi‐decadal to centennial timescale. The latter involve a shift towards the La Niña‐like mean state with wetter conditions in the Australian region between AD 700 and 1150. A transition period in ENSO mean state occurred across Australia during AD 1150–1300, with persistent El Niño‐like and drier conditions to ca. AD 1500, and increasing ENSO variability post‐AD 1500 to the present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
《Quaternary Science Reviews》2007,26(7-8):1055-1066
A high-resolution multiproxy study performed on a marine record from SE Pacific off southern South America was used to reconstruct past regional environmental changes and their relation to global climate, particularly to El Niño/Southern Oscillation (ENSO) phenomenon during the last 2200 years. Our results suggest a sustained northward shift in the position of the zonal systems, i.e. the Southern Westerly Wind belt and the Antarctic Circumpolar Current, which occurred between 1300 and 750 yr BP. The synchrony of the latitudinal shift with cooling in Antarctica and reduced ENSO activity observed in several marine and terrestrial archives across South America suggests a causal link between ENSO and the proposed displacement of the zonal systems. This shift might have acted as a positive feedback to more La Niña-like conditions between 1300 and 750 yr BP by steepening the hemispheric and tropical Pacific zonal sea surface temperature gradient. This scenario further suggests different boundary conditions for ENSO before 1300 and after 750 yr BP.  相似文献   

13.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

14.
El Niño/Southern Oscillation (ENSO) is well known to have a worldwide impact, in particular on streamflows. As an illustration, we found a good correlation (~0.47, 5-month time delay) between the ENSO activity and the discharge of the main rivers in French Guiana. However, this calculation was made between climatic and hydrological processes at ‘isolated precise moments’. Using a new method of time series analysis, we considered the ENSO and Atlantic Ocean/river discharge correlation integrated over time. This method shows, with more than 99% confidence level, new possible delayed and combined influences between the phenomena (respectively ~20 and 40 months for ENSO and Atlantic Ocean influences). To cite this article: C. Gaucherel, C. R. Geoscience 336 (2004).  相似文献   

15.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

16.
How and to what extent are human societies affected by climate change? There has been a growing body of research using big historical data and statistical analyses to provide scientific answers to this inter-disciplinary research question. However, quantitative analysis measuring the historical demographic impact of ocean/atmosphere interaction is still scanty. Here we use 544 years (1368–1911) of historical records to trace the demographic impact brought about by ocean/atmosphere interaction in Shaanxi, located on the northern fringe of the Asian summer monsoon region in China. Our results show that: (1) North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) caused Malthusian catastrophes mainly through drought at the inter-annual scale; (2) drought reinforced the synchrony of various Malthusian catastrophes at the inter-annual to multi-decadal scale; and (3) the unusual cycles of NAO drove drought and various Malthusian catastrophes in the cold 1550–1730 period at the multi-decadal scale. This study represents a pioneering attempt to quantitatively assess the demographic impact caused by the ocean/atmosphere in historical China. Our findings may help to conceptualise the climate–human nexus in those ecologically marginal regions that are impacted by ocean/atmosphere interaction, and to explain the synchrony of social crisis in Eurasia in the 17th century.  相似文献   

17.
Meteorological impacts of El Niño events of 1982–1983 and 1997–1998 were observed in locations throughout the world. In southern Brazil, El Niño events are associated with increased rainfall and higher freshwater discharge into Patos Lagoon, a large coastal lagoon that empties into the Atlantic Ocean. Based on interdecadal meteorological and biological data sets encompassing the two strongest El Niño events of the last 50 yr, we evaluated the hypothesis that El Niño-induced hydrological changes are a major driving force controlling the interannual variation in the structure and dynamics of fishes in the Patos Lagoon estuary. High rainfall in the drainage basin of the lagoon coincided with low salinity in the estuarine area during both El Niño episodes. Total rainfall in the drainage basin was higher (767 versus 711 mm) and near-zero salinity conditions in the estuarine area lasted about 3 mo longer during the 1997–1998 El Niño event compared with the 1982–1983 event. Hydrological changes triggered by both El Niño events had similar relationships to fish species composition and diversity patterns, but the 1997–1998 event appeared to have stronger effects on the species assemblage. Although shifts in species composition were qualitatively similar during the two El Niño events, distance between El Niño and non-El Niño assemblage multivariate centroids was greater during the 1996–2000 sampling period compared with the 1979–1983 period. We provide a conceptual model of the principal mechanisms and processes connecting the atmospheric-oceanographic interactions triggered by the El Niño phenomena and their effect on the estuarine fish assemblage.  相似文献   

18.
《Quaternary Research》2014,81(3):520-530
Temperature signals in ice-core δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten ice-core δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both ice-core δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP ice-core isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP ice-core δ18O.  相似文献   

19.
The northern segment of the Peruvian Andes is affected by a twofold climate with measurable implications on landscapes and landscape dynamics. During ‘normal’ or ‘neutral’ years easterly winds bring rain from the Atlantic and the Amazon Basin to the Sierras, which results in a seasonal climate with rather low-intensity precipitations. In contrast, during the large-scale warm phase of the ENSO cycle, El Niños transfer moisture from the Pacific to the Peruvian coast by westerly winds and result in high-intensity precipitation. We investigate the effects of this twofold climate for the case of the Piura drainage basin at ca. 5°S latitude (northern Peru). In the headwaters that have been under the influence of the easterlies, the landscape is mantled by a thick regolith cover and dissected by a network of debris flow channels that are mostly covered by a thick layer of unconsolidated sediment. This implies that in the headwaters of the Piura River sediment discharge has been limited by the transport capacity of the sediment transfer system. In the lower segment that has been affected by high-intensity rainfall in relation to the westerlies (El Niños), the hillslopes are dissected by debris flow channels that expose the bedrock on the channel floor, implying a supply-limited sediment discharge. Interestingly, measurements at the Piura gauging station near the coast reveal that, during the last decades, sediment was transferred to the lower reaches only in response to the 1982–1983 and 1997–1998 El Niño periods. For the latter period, synthetic aperture radar (SAR) intensity images show that the locations of substantial erosion are mainly located in areas that were affected by higher-than-average precipitation rates. Most important, these locations are coupled with the network of debris flow channels. This implies that the seasonal easterlies are responsible for the production of sediment through weathering in the headwaters, and the highly episodic El Niños result in export of sediment through channelized sediment transport down to the coastal segment. Both systems overlap showing a partially coupled sediment production–delivery system.  相似文献   

20.
We present the results of sclerochronologically calibrated growth and stable isotope analyses of the freshwater bivalve Margaritifera falcata collected from an agricultural, suburban setting near Vancouver, BC. The oxygen isotope range of shell aragonite can be explained by the temperature range during the growing season, assuming the water δ 18O composition remained constant. However, shell growth is strongly influenced by local summer precipitation and potentially runoff of nutrient-rich stormwater. About 44% of the variability of annual shell growth can be explained by amounts of local summer (June–September) rainfall. Local winter precipitation and El Niño–Southern Oscillation (ENSO) strength during the preceding year exert a weak, but significant control on shell growth. In combination, summer and winter precipitation can explain up to 50% of the variability in annual shell growth. Spectral analyses substantiate the effect of precipitation on shell growth and demonstrate that shell growth and ENSO are coupled by precipitation. Common spectral density was found at periods of 6.5–9 years, particularly between 1985 and 2004. Higher frequency oscillation corresponding to periods of 3–5 years occurred during the early 1970s, early to mid 1980s, and later 1990s. These results suggest that skeletal records of bivalve mollusks provide suitable archives of ENSO-coupled precipitation in areas where other climate proxies such as tree-rings and speleothems may not be available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号