首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) was used to assess the effect of seasonal shifts and vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer > autumn > spring > winter). The bacteria/fungi PLFAs and G (+) /G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.  相似文献   

2.
Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground(10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil(33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil(100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids(PLFAs), carbon(C) and nitrogen(N) contents and the isotope ratios of C(δ13C) and N(δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiczii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA composition was related tothe successional ages and the developing soil properties(P 0.05, ANOSIM). The chronosequential analysis effectively detected the successional changes in both microbial and plant communities.  相似文献   

3.
Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphus jujuba (ZJ)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct seasonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CV) of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respiration) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying CO2 emissions via SR at regional scales.  相似文献   

4.
Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.  相似文献   

5.
Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristics of soil seed banks and the potential of soil seed banks of different successional stages for vegetation restoration. In this study, seasonal changes of the soil seed bank, and seed production and dispersal dynamics along degradation successional gradients were investigated in a saline-alkaline grassland in Northeast China, where the dominant grass during the 1960 s, Leymus chinensis was replaced with the secondary successional order of Puccinellia chinampoensis, Chloris virgata, and Suaeda salsa, together with bare patches. It was found that the soil seed bank composition varied according to the changing vegetation and had the highest species richness(7–16) in the climax successional stage, but had a low S?rensen similarity(0.22–0.37) with the aboveground vegetation. There was a high seed density of the soil seed bank(21 062–62 166/m2 in August and December) and also high S?rensen similarity index values(0.47–0.60) in the secondary successional stages of P. chinampoensis, C. virgata, and S. salsa. In bare patches, there were many seeds in the soil seed bank and some seedlings also appeared in the aboveground vegetation, indicating the existence of a persistent soil seed bank. Seed density and species richness differed substantially among the different successional stages, which was related to the reproductive characteristics of the standing plants in vegetation communities. Due to the lack of propagules of perennial species, especially the climax species of L. chinensis, in the soil, the successful restoration of the degraded saline-alkaline grassland was not possible. The study proved that in a degraded saline-alkaline grassland dominated by biennial or annual species, the soil seed bank was important for the revegetation of the current dominant plants, but not for the restoration of the original target species. Therefore, it is necessary to induce seeds or other propagules of the target perennial species.  相似文献   

6.
Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the Asia- Pacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia (July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling (MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their growth seasons. Future works should include quantitative determination of the contribution of epilithic biofilms to the diet of A. japonicus, potential roles of epilithic biofilms in regulating the water quality of sea cucumber ponds, and the regulation of epilithic biofilms in sea cucumber culture ponds.  相似文献   

7.
The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at-2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identifi ed. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included H olophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and A rctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×10~7 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1–3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass(including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was signifi cantly negatively correlated with salinity.  相似文献   

8.
We carried out experiments with various concentrations of Trichoderma harzianum YC459 in different soil types (forest soil, mixed soil, merchantable soil, and leaf mold soil) to evaluate its effect on seed germination and seedling establishment of four species (Festuca arundinacea Schreb., Dianthus barbatus var. asiaticus Nakai, Lespedeza cyrtobotrya Miq., and Parthenocissus tricuspidata Planch) for rock slope restoration. We also investigated the use of drilled slanted holes on the rock slopes for seedling establishment. The results showed that T. harzianum concentration had significant effects on seed germination, seedling growth, and seedling survival for all the species with different soil types. Seed germination and survival rates peaked at 5% T. harzianum concentration with leaf mold soil and decreased as T. harzianum concentration increased from 5% to 10%. Seedling survival rates of all four species were generally lowest at 0% T. harzianum concentration in all soil types. The height of F. arundinacea and L. cyrtobotrya peaked at 5% T. harzianum concentration whereas that of D. barbatus and P. tricuspidata peaked at 10% T. harzianum concentration. We concluded that 5% T. harzianum concentration with leaf mold soil is appropriate for seed germination and seedling survival rates of most species, thus enhancing seedling establishment. Practical application of the findings of this study will contribute in the vegetation restoration of steep rocks in mountain environments  相似文献   

9.
We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population(M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City,China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass,and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June,and the biomass of cyanobacteria reached a maximum in August. From February to March 2012,the main form of M.aeruginosa was the single-cell form; M.aeruginosa colonies began to appear from April,and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July,and then gradually decreased from August. The diameter range of M. aeruginosa colonies was 18.37–237.77 μm,and most of the colonies were distributed in the range 20–200 μm,comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobacterial growth was in the range of 15–30°C. In natural water bodies,photosynthetically active radiation had a significant positive influence on the colonial diameter of M.aeruginosa(P0.01).  相似文献   

10.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

11.
Labile organic carbon (LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site (3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) were positively correlated with SOC. The content of easily oxidized carbon (EOC), particulate organic carbon (POC) and light fraction organic carbon (LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth. The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents were different with the changes of SOC (p<0.05), meanwhile, both LFOC and POC were related to total SOC (p<0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude, were involved in the regulation of SOC, TN, MBC, MBN and LFOC contents in the Sygera Mountains, Tibetan Plateau.  相似文献   

12.
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.  相似文献   

13.
Nitrogen (N) and phosphorus (P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types (Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon (C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation.  相似文献   

14.
The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Cv), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasistraight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.  相似文献   

15.
The main aim of this paper was to calculate soil organic carbon stock (SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China. A novel prediction process was presented and was referred to as model-then-calculate with respect to the variable thicknesses of soil horizons (MCV). The model-then-calculate with fixed-thickness (MCF), soil profile statistics (SPS), pedological professional knowledge-based (PKB) and vegetation type-based (Veg) methods were carried out for comparison. With respect to the similar pedological information, nine common layers from topsoil to bedrock were grouped in the MCV. Validation results suggested that the MCV method generated better performance than the other methods considered. For the comparison of polygon based approaches, the Veg method generated better accuracy than both SPS and PKB, as limited soil data were incorporated. Additional prediction of the pedogenetic horizons within MCV benefitted the regional SOCS estimation and provided information for future soil classification and understanding of soil functions. The intermediate product, that is, horizon thickness maps were fluctuant enough and reflected many details in space. The linear mixed model indicated that mean annual air temperature (MAAT) was the most important predictor for the SOCS simulation. The minimal residual of the linear mixed models was achieved in the vegetation type-based model, whereas the maximal residual was fitted in the soil type-based model. About 95% of SOCS could be found in Argosols, Cambosols and Isohumosols. The largest SOCS was found in the croplands with vegetation of Triticum aestivum L., Sorghum bicolor (L.) Moench, Glycine max (L.) Merr., Zea mays L. and Setaria italica (L.) P. Beauv.  相似文献   

16.
Allometric equations of select tree species of the Tibetan Plateau,China   总被引:1,自引:0,他引:1  
The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.  相似文献   

17.
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.  相似文献   

18.
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.  相似文献   

19.
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10~(–6)x~2 + 0.0228 x + 0.0211(R~2 = 0.9994,P 0.05),and a power function model R? = 10.394?~(0.2153)(R~2 = 0.9759,P 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km~2) and the ?,with the highest R~2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.  相似文献   

20.
A pot experiment was conducted in the Institute of Tianlong Ecology of Baotou City in Inner Mongolia, China, to investigate the effects of the application of biofertilizers and super absorbent polymers (SAP) on plant growth and soil improvement in arid mining area soil. Two typical species, namely, Syringa oblata Lindl. (SO) and Medicago sativa L. (MS), were present in the Bayan Obo mining area and used as representatives of shrubs and herbaceous plants in the pot experiment. (1) Biofertilizers and SAP significantly increased the tree height, the ground diameter of SO, and the total biomass of MS and improved the soil fertility of the mining area, especially its biological fertility, compared with those of the control group (CK). The application of biofertilizers and SAP decreased the mining soil pH and significantly increased available nitrogen, available phosphorus, available potassium, and soil organic matter. (2) After 180 days of growth, the microbial population (bacteria, fungi, and actinomycetes) and soil microbial biomass carbon and nitrogen significantly increased. Microbial ratios C: N significantly decreased compared with those of CK. (3) T5 and T6 treatments with the following dosages might be the optimum selection for the improvement of the studied mining area soil: 20 g SAP + 15 g biofertilizers (SO), 100 g/m2 SAP + 150 g biofertilizers (MS); 20 g SAP + 30 g biofertilizers (SO), and 100 g/m2 SAP + 200 g biofertilizers (MS). This study provided a promising reference for conducting future field studies and the local vegetation restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号