首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a dendroclimatic analysis of Siberian larch trees sampled along a latitudinal 260-km transect located in the Polar Urals,Russia. Three standardised chronologies were built over a length of 230–293 years using 79 individual tree-ring chronologies collected in the southern,middle and northern parts of the Polar Urals.Bootstrapped correlation functions showed that the annual growth of the larches was mainly influenced by the air temperatures in June and July. The relative role of the temperatures increased from south to north. Daily air temperature data analysis revealed that the duration of the growing season in the northern part of the Polar Urals is 24 days less than that in the southern part. At the present time, air temperatures exceeded threshold of 8~℃, 5 days earlier than it did in the beginning of the 20 th century In response to the increase in the duration of the growing season and the changing winter conditions in the Polar Urals over the last 130 years, radial growth–temperature relationships in larches have weakened;this effect was strongly pronounced in the southern part of the Polar Urals.  相似文献   

2.
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.  相似文献   

3.
京津冀地区植被时空动态及定量归因   总被引:2,自引:0,他引:2  
作为气候变化的敏感指示器,植被的物候、生长、空间分布格局等特征及其动态变化主要取决于气候环境中的水热条件,因此在气候变化背景下,气候-植被关系成为了全球变化研究的前沿和热点问题。本文综合平均温度、降水、水汽压、湿度、日照时数、SPEI等气候因子,坡度、坡向海拔等地形因子及人为活动因子,应用地理探测器方法针对2006-2015年京津冀地区不同季节NDVI、不同地貌类型区、不同植被类型区生长季NDVI的定量归因研究,揭示了过去10年间植被时空分布格局,及植被对气候、非气候因素响应的季节差异与区域差异,以期为生态工程的建设与修复提供参考意义。趋势分析表明:①2006-2015年京津冀地区NDVI呈现增加趋势,但存在显著的空间差异,如山地生长季NDVI的增长速率大于平原、台地、丘陵等地;②基于地理探测器的定量归因结果表明,降水是年尺度上NDVI空间分布的主导因子(解释力39.4%),土地利用与降水的交互作用对NDVI的影响最为明显(q=58.2%);③NDVI对气候因子的响应存在季节性及区域性差异,水汽压是春季NDVI空间分布的主导因子,湿度是夏、秋两季的主导因子,土地利用是冬季的主导因子;④影响因子对生长季NDVI的解释力因不同地貌类型区、不同植被类型区而差异显著。  相似文献   

4.
Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species’ response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species, are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee (VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here. Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution of butterflies at family level. Also, distribution of butterflies in the area was independent of habitat type, at family level. Besides, we employed indicator group analysis (at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.  相似文献   

5.
The tea tree [Camellia sinensis (L) Kuntze] is one of the world's economic crops. It is an especially important crop for southern China. Environmental factors related to the tea yield and quality in some high mountain areas of China are identified in this paper. These factors are: geology, topography, climate, hydrology, soil and vegetation. Climatological factors are the most important. Using data collected from meteorological stations which are situated at the summit and the base of high mountains, this paper discusses ecological climatic problems in growing tea in China. The ecological climatic characteristics of the famous tea areas mainly included are as follows: more . amounts of clouds and fog, less percentage of sunshine, abundant rainfall and high relative humidity in the air, temperatures that rise and fall slowly, daily and annual temperature ranges that are smaller, more days that are suitable for tea growing and low wind speeds in the lee-sides and valleys of mountains. All of these factors  相似文献   

6.
京津冀地区NDVI变化及气候因子驱动分析   总被引:3,自引:0,他引:3  
植被覆盖动态监测及与气候变化的响应,是陆地生态系统研究的重要内容。本文以2001-2013年间京津冀地区MOD13A 3月合成NDVI数据,结合生长季的降水和气温资料,运用偏相关和复相关分析、趋势分析方法,研究了该区域NDVI的变化特征和空间分布,以及其区域植被覆盖变化的气候驱动力。结果表明,该区域NDVI最大值在13a间缓慢增加,植被覆盖呈现改善趋势;NDVI和生长季降雨量及平均气温的平均偏相关系数分别为0.20和-0.14,表明在年际变化水平上,京津冀地区NDVI总体与降水量呈正相关,与平均气温呈负相关,且降水对NDVI的影响大于温度对NDVI的影响。对植被覆盖驱动分区得出,降水和气温驱动型占区域面积的5.68%;单独降水驱动型和气温驱动型分别占4.51%、0.18%;区域内植被覆盖变化主要受非气候因子驱动型为主,所占比例为89.63%,表明人类活动对植被变化的影响巨大。  相似文献   

7.
Changes in vegetation phenology are key indicators of the response of ecosystems to climate change. Therefore, knowledge of growing seasons is essential to predict ecosystem changes, especially for regions with a fragile ecosystem such as the Loess Plateau. In this study, based on the normalized difference vegetation index (NDVI) data, we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning, length, and end of the growing season, measuring changes in trends and their relationship to climatic factors. The results show that for 54.84% of the vegetation, the trend was an advancement of the beginning of the growing season (BGS), while for 67.64% the trend was a delay in the end of the growing season (EGS). The length of the growing season (LGS) was extended for 66.28% of the vegetation in the plateau. While the temperature is important for the vegetation to begin the growing season in this region, warmer climate may lead to drought and can become a limiting factor for vegetation growth. We found that increased precipitation benefits the advancement of the BGS in this area. Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process. A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS, indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region. Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas, such as the Loess Plateau. The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.  相似文献   

8.
Numerous studies have reported that treelines are moving to higher elevations and higher latitudes.Most treelines are temperature limited and warmer climate expands the area in which trees are capable of growing.Hence,climate change has been assumed to be the main driver behind this treeline movement.The latest review of treeline studies was published in 2009 by Harsch et al.Since then,a plethora of papers have been published studying local treeline migration.Here we bring together this knowledge through a review of 142 treeline related publications,including 477 study locations.We summarize the information known about factors limiting tree-growth at and near treelines.Treeline migration is not only dependent on favorable growing conditions but also requires seedling establishment and survival above the current treeline.These conditions appear to have become favorable at many locations,particularly so in recent years.The review revealed that at 66%of these treeline sites forest cover had increased in elevational or latitudinal extent.The physical form of treelines influences how likely they are to migrate and can be used as an indicator when predicting future treeline movements.Our analysis also revealed that while a greater percentage of elevational treelines are moving,the latitudinal treelines are capable of moving at greater horizontal speed.This can potentially have substantial impacts on ecosystem carbon storage.To conclude the review,we present the three main hypotheses as to whether ecosystem carbon budgets will be reduced,increased or remain the same due to treeline migration.While the answer still remains under debate,we believe that all three hypotheses are likely to apply depending on the encroached ecosystem.Concerningly,evidence is emerging on how treeline migration may turn tundra landscapes from net sinks to net sources of carbon dioxide in the future.  相似文献   

9.
Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship (i.e., the “divergence” phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods (1952–1980 and 1981–2009), 2) three elevations (2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the current summer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.  相似文献   

10.
Variations and trends in extreme climate events are more sensitive to climate change than the mean values,and so have received much attention.In this study,twelve indices of temperature extremes and 11 indices of precipitation extremes at 32 meteorological stations in Hengduan Mountains were examined for the period 1961-2008.The results reveal statistically significant increases in the temperature of the warmest and coldest nights and in the frequencies of extreme warm days and nights.Decreases of the diurnal temperature range and the numbers of frost days and ice days are statistically significant.Regional averages of growing season length also display the trends consistent and significant with warming.At a large proportion of the stations,patterns of temperature extremes are consistent with warming since 1961:warming trends in minimum temperature indices are greater than those relating to maximum temperature.As the center of the Shaluli Mountain,the warming magnitudes decrease from inner to outer.Changes in precipitation extremes is low:trends are difficult to detect against the larger inter-annual and decadal-scale variability of precipitation,and only the wet day precipitation and the regional trend in consecutive dry days are significant at the 0.05 level.It can be concluded that the variation of extreme precipitation events is not obvious in the Hengduan Mountains,however,the regional trends generally decrease from the south to the north.Overall,the spatial distribution of temporal changes of all extreme climate indices in the Hengduan Mountains illustrated here reflects the climatic complexity in mountainous regions.  相似文献   

11.
This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000-2009.The results showed as follows.The average NDVI values increased at a rate of 0.0024 year-1.The increase rate differed with vegetation types,such as 0.0034 year-1 for forest and 0.0017 year-1 for tundra.Trend analyses revealed a consistent NDVI increase at the start and end of the growing season but little variation or decrease observed in July during the study period.The NDVI in CMNR showed a stronger correlation with temperature than with precipitation,especially in spring and autumn.A stronger correlation was observed between NDVI and temperature in the tundra zone (2,000-2,600m) than in the coniferous forest (1,100-1,700m) and Korean pine-broadleaved mixed forest (700-1,100m) zones.The results indicate that vegetation at higher elevations is more sensitive to temperature change.NDVI variation had a strong correlation with temperature change (r=0.7311,p<0.01) but less significant correlation with precipitation change.The result indicates that temperature can serve as a main indicator of vegetation sensitivity in the CMNR.  相似文献   

12.
在全球气候变化背景下,植被动态变化以及植被对气候变化的响应方式已经成为生态学和地理学领域的热点。本文对比分析了南方亚热带季风区将乐县不同类型森林植被对不同时间尺度的干旱响应的差别。基于2000-2017年MODIS-EVI数据及气象站点数据,用最大值合成法、趋势分析法以及相关分析法,分析了森林植被及气象因子的动态变化特征,并对比不同森林植被对气候变化响应的差别。研究表明:① 2000-2017年,研究区植被覆盖度、EVI和降水均显著增加,区域内湿度增加,森林长势渐趋良好;② EVI在生长季初期和末期与同期的降水、温度均显著正相关(P<0.1),初期森林受降水因子的影响更大,末期受温度因子的影响大;③ 1-3月和周年的气候变化对森林的生长至关重要,长时间尺度的湿度增加对森林生长具有显著的促进作用,SPEI的时间尺度越长与EVI的相关性也越大;④ 针阔混交林与同期温度、降水的相关系数最高,并且与不同时间尺度的SPEI相关性均比较高,属于气候敏感型林型,在生产经营中要谨慎预防气候变化对该林型带来的伤害;⑤ 森林覆盖度变化与降水和SPEI_24的相关性极显著,长时间尺度的降水变化是影响森林植被覆盖率变化的重要因素之一。  相似文献   

13.
Climate change will affect the geographic distribution and richness of species at different spatial and temporal scales. We applied Maximum entropy(MaxEnt) modeling to predict the potential influence of climatic change on the current and future distribution of the important mountainous tree species Moringa peregrina(Forssk.) Fiori. The Maxent model performed better than random models for the species with the training and test AUC(Area Under the receiver-operating characteristic Curve) values of 0.96 and 0.90, respectively. Jackknife test and response curves showed that the distribution of the species negatively correlates with higher altitudes and precipitation in October and November. Moreover, it positively correlates with the total annual precipitation and precipitation in January. Under current and future climatic conditions, our model predicted habitat gains for M. peregrina towards the coastal northern and southern limits of its distribution. The potentially suitable habitats, under future climate projections, are currently characterized by elevations of 1000 m a.s.l. and total annual precipitation of 80-225 mm/year. Moderate and high potential habitat suitability will increase by 5.6%-6% and 2.1%-2.3%, under RCP2.6 and RCP4.5 scenario, respectively. The results indicated that the habitat suitability of M. peregrina would increase with increasing climate warming, particularly under RCP2.6 scenario. We recommend sustainable conservation and cultivation of Moringa peregrina in its current habitats along the Red Sea mountains.  相似文献   

14.
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.  相似文献   

15.
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.  相似文献   

16.
Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio (Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and (fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.  相似文献   

17.
"Warming hiatus" occurred in the AltaySayan Mountain Region, Siberia in c. 1997–2014. We analyzed evergreen conifer(EGC) stands area(satellite data) and trees(Siberian pine, Pinus sibirica Du Tour, Siberian fir, Abies sibirica Ledeb.) growth increment(dendrochronology data) response to climate variables before and during the hiatus. During the hiatus, EGC area increased in the highlands(1000 m)(+30%), whereas at low and middle elevations(1000 m. a.s.l.) the EGC area decreased(-7%). The EGC area increase was observed on the rain-ward northwest slopes mainly. In highlands, EGC area increase mainly correlated with summer air temperature, whereas at low and middle elevations EGC area decrease correlated with drought index SPEI and vapor pressure deficit(VPD). EGC mortality(fir and Siberian pine) in lowland was caused by the synergy of water stress(inciting factor) and barkbeetle attacks(contributing factor). Tree growth increment(GI) dynamics differs with respect to elevation. At high elevation(1700 m) GI permanently increased since warming onset, whereas at the middle(900 m) and low elevations(450 m) GI increased until c. 1983 yr. with followed depression. That GI "breakpoint" occurred about a decade before hiatus onset. In spite of growth depression, during hiatus GI was higher than that in pre-warming period. At high elevation, GI positively responded to elevated June temperatures and negatively to moisture increase(precipitation, root zone moisture content, VPD, and SPEI). At low elevation GI negatively responded to June temperatures and positively to moisture increase. For both, low and high elevation, these patterns persisted throughout the study period(1967–2014). On the contrary, at middle elevations GI dependence on climate variables switch after breakpoint year(1983). Before breakpoint, June air temperature(positive correlation) and moisture(negative correlations) controlled GI. Further temperature increase leads GI depression and switched correlation signs to opposite(from positive to negative with temperature, and from negative to positive with moisture variables).  相似文献   

18.
本文用36年(1951~1986)我国汛期(4~9月)160个站的降水距平百分率资料,用RPCA(Rotated Principal Component Analysis))的方法对我国汛期降水进行研究,结果表明:我国汛期降水有六种典型结构,它代表了我国汛期降水的空间分布特征;而相应的时间系数代表着年际变化。如果将各主分量的时间系数做5年滑动平均,按文献所定义的气候跃变,则在六十年代,我国黄河流域、长江下游及以南、东北地区的降水发生了气候跃变。  相似文献   

19.
Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape processes. To better understand the hydro-thermal dynamics of active layer and the interactions between rainfall and permafrost, we applied the coupled heat and mass transfer model for soil-plant-atmosphere system into high-altitude permafrost regions in this study. Meteorological data, soil temperature, heat flux and moisture content from different depths within the active layer were used to calibrate and validate this model. Thereafter, the precipitation was increased to explore the effect of recent climatic wetting on the thermal state of the active layer. The primary results demonstrate that the variation of active layer thickness under the effect of short-term increased precipitation is not obvious, while soil surface heat flux can show the changing trends of thermal state in active layer, which should not be negligible. An increment in year-round precipitation leads to a cooling effect on active layers in the frozen season, i.e. verifying the insulating effect of "snow cover". However, in the thawed season, the increased precipitation created a heating effect on active layers, i.e. facilitating the degradation of permafrost. The soil thermal dynamic in single precipitation event reveals that the precipitation event seems to cool the active layer, while compared with the results under increased precipitation, climatic wetting trend has a different influence on the permafrost evolution.  相似文献   

20.
The influence of climate change on vegetation phenology is a heated issue in current climate change study. We used GIMMS-3g NDVI data to detect the spatio-temporal dynamics of the start of the growing season (SGS) over the Tibetan Plateau (TP) from 1982 to 2012 and to analyze its relationship with temperature and precipitation. No significant trend was observed in the SGS at the regional scale during the study period (R 2 = 0.03, P = 0.352). However, there were three time periods (1982-1999, 1999-2008 and 2008-2012) with identifiable, distinctly different trends. Regions with a significant advancing trend were mainly scattered throughout the humid and semi-humid areas, whereas the regions with a significant delaying trend were mostly distributed throughout the semi-arid areas. Statistical analysis showed that the response of the SGS to climate change varies spatially. The SGS was significantly correlated with the spring temperature and the start of the thermal growth season (STGS) in the relatively humid area. With increasing aridity, the importance of the spring temperature for the SGS gradually decreased. However, the influences of precipitation and winter temperature on the SGS were complicated across the plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号