首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of sediment chloroplastic pigments (Chl-a, i.e. chlorophyll a and Pha-a, i.e. phaeophorbide a) in the Southern Yellow Sea of China was studied. Samples were collected from four cruises in January and June 2003, and January and June 2004. The results show that the vertical distribution of Chl-a and Pha-a in the sediment layers 0-2cm, 2-5cm and 5-8cm, follows a stable ratio, 5:3:2. The average ratio of Pha-a to Chl-a in sediment is 2.83. Spearman 2-tailed rank correlation analysis shows that Chl-a and Pha-a contents in each sediment layer have a highly significant correlation. The average contents of Chl-a and Pha-a in the sediment of the 0-8cm layer in the investigated area are 0.31 -0.47μgg-1 and 1.28-1.40 μgg-1 sediment (dry weight), respectively. The average Chl-a and Pha-a contents in sediment are higher in summer than in winter. ANOVA analysis shows that there is a highly significant variation among the Chl-a contents (P = 0.002 <0.01) of the four cruies, but this is not true for the case of Pha-a content (P = 0.766>0.05). The average Chl-a and Pha-a contents in the 2 sediment layers (0-2cm and 2-5cm) have significant or highly significant correlations with organic matter (OM), median diameter (Mdφ), silt plus clay percentage in the January 2003 cruise. In the June 2003 cruise, the average Chl-a content in the 3 sediment layers (0-2cm, 2-5cm, and 5-8cm) has a significant correlation with meiofauna biomass, and Pha-a content has highly significant correlations with water depth, bottom water temperature, OM and Mdφ The contents of Chl-a and Pha-a are lower than those in estuaries and intertidal areas, but close to those in the same area studied previously.  相似文献   

2.
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R~2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R~2 ≥ 0.9164), but a linear one with their canopy area(R~2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m~2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m~2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R~2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R~2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R~2 ≥ 0.9606) and linearly(R~2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region.  相似文献   

3.
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10~(–6)x~2 + 0.0228 x + 0.0211(R~2 = 0.9994,P 0.05),and a power function model R? = 10.394?~(0.2153)(R~2 = 0.9759,P 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km~2) and the ?,with the highest R~2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.  相似文献   

4.
Accordion-shaped traps are widely used in China to catch the Asian paddle crab Charybdis japonica but traps of conventional design often catch juvenile crabs. A new type of accordion-shaped trap with an escape vent (L×W=4.3 cm×3.0 cm) was designed and a comparative study between the newly designed and conventional traps was performed in the artificial reef area of Zhuwang, Laizhou Bay, China from June to August 2012. The mean catch per unit effort (CPUE) of undersized crabs was significantly lower in the vented traps than in the conventional traps (paired t -test, n=30, P<0.001), while the CPUE of marketable crabs was significantly higher in the vented traps (paired t-test, n=30, P<0.001). The mean size of crabs (carapace length) caught in the vented traps was significantly larger than in conventional traps (paired t-test, n=29, P<0.001). The ratio of undersized crabs was 35.05±2.57% in conventional traps and 12.53±0.69% in vented traps (significantly lower, paired t-test, n=29, P<0.001). Therefore, a 4.3 cm×3.0 cm escape vent was considered appropriate for C. japonica fishing in the artificial reef area. This finding will assist the development of more sustainable and efficient crab fishing methods using accordion-shaped traps.  相似文献   

5.
The effects of body weight and temperature on the carbon budget of the juvenile bastard halibut ,Paralichthys olivaceus ,were studied at temperature 13.5,18,21.5 and 24℃,respectively.The carbon intake,faecal and growth carbon were measured ,and the carbon respiration was calculated using the carbon budget equation (Cc=Gc Fc Rc),The combined relationship between different components of the carbon budgent,body weight and temperature could be described by regression equations:Cc=1.0206 W^0.8126E^0.1483T;Gc=0.0042w^1.4096(-5.11 T^3 285.90T^2-5173.72T 30314.03);Fc=0.0485W^0.7711e^0.1624T;Uc=1.4333W^0.6715e^0.1487t,Body weight had no significant effect on the carbon absorption efficiency and the conversion efficiency.  相似文献   

6.
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil aquaculture pond sediment soil near the discharge outlet rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R~2 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.  相似文献   

7.
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.  相似文献   

8.
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I 30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I 30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and I 30 values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI 30 (Product of P and I 30) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and PI 30 with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.  相似文献   

9.
Trophic interaction among various biomass groups in a swimming crab Portunus trituberculatus polyculture pond was investigated using carbon and nitrogen stable isotope analysis. The polycultured animal species also included white shrimp Litopenaeus vannamei, short-necked clam Ruditapes philippinarum, and redlip mullet Liza haematochila. The mean δ13C value for all the biomass groups in polyculture ecosystem ranged from ?25.61‰ to ?16.60‰, and the mean δ15N value ranged from 6.80‰ to 13.09‰. Significant difference in the δ13C value was found between particulate organic matter (POM) and sediment organic matter (SOM) (P < 0.05), indicating that these two organic matter pools have different material sources. Assuming that a 13C-enrichment factor of 1.00‰ and a 15N-enrichment factor of 2.70‰ existed between consumer and prey, diets of the four cultured animals were estimated using a stable isotope mixing model. The estimated model results indicated that P. trituberculatus mainly feed on Aloidis laevis; L. vannamei mainly feed on shrimp feed; while A. laevis, R. philippinarum and L. haematochelia mainly feed on POM. Shrimp feed was also an important food source of R. philippinarum and L. haematochelia. The diets of P. trituberculatus, L. vannamei, R. philippinarum, and L. haematochila showed complementary effects in this polyculture ecosystem. Our finding indicated that the polyculture of these four organisms with suitable farming density could make an effective use of most of the food sources, which can make a highly efficient polyculture ecosystem.  相似文献   

10.
Allometric equations of select tree species of the Tibetan Plateau,China   总被引:1,自引:0,他引:1  
The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.  相似文献   

11.
In this study, molecular weight controllable degradation of algal Laminaria japonica polysaccharides(LPS) was investigated by ultrasound combined with hydrogen peroxide. Three main factors, i.e., ultrasonic power(A), ultrasonic time(B), and H2O2 concentration(C) were chosen for optimizing parameters by employing three-factors, three-levels BBD. The influence of degradation on structure change and antioxidant activities was also investigated. A second-order polynomial equation including molecular weight(Y) of Laminaria japonica polysaccharides and each variable parameter, i.e., ultrasonic power(A), ultrasonic time(B), and H2O2 concentration(C), was established: Y=20718.67-4273.13A-4000.38B-1438.75C+2333.25AB+1511.00AC+873.00BC+2838.29A2 + 2490.79B2+873.04C2. The equation regression coefficient value(R2 = 0.969) indicated that this equation was valid. The value of the adjusted determination coefficient(adjusted R2 = 0.914) also confirmed that the model was highly significant. The results of selected experimental degradation conditions matched with the predicted value. FT-IR spectra revealed that the structures of LPS before and after degradation were not significantly changed. Antioxidant activities of LPS revealed that low Mws possessed stronger inhibitory than the original polysaccharides. The scavenging effects on superoxide radicals was the highest when IC50 of crude LPS was 4.92 mg mL-1 and IC50 of Mw 18.576 KDa was 1.02 mg mL-1, which was fourfold higher than initial polysaccharide.  相似文献   

12.
Accurate assessment of surface suspended sediment concentration(SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/l were carried out using an Ava Field-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance(Rrs) was obtained in the spectral range of 726–900 nm. At SSSC greater than 2700 mg/L, the 740–900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed(R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared(NIR) band(740–900 nm) to a visible band(400–600 nm) as factors, provided robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.  相似文献   

13.
The effects of Bacillus subtilis 2-1 from the intestine of healthy sea cucumber on the growth, digestive enzyme activities and intestinal microbiota of juvenile sea cucumber (Apostichopus japonicus) were determined in the present study. Sea cucumber was fed with Sargassum thunbergii powder supplemented with B. subtilis 2-1 at different concentrations varying among 0 (control), 105, 107, and 109 CFU g?1 for 8 weeks. Results showed that the growth performance and intestinal amylase and trypsin activities were significantly increased by dietary B. subtilis 2-1 at 109 CFU g?1 (P < 0.05). However, dietary B. subtilis 2-1 had no significant influence on the lipase activity in sea cucumber (P > 0.05). The polymerase chain reaction denaturing gradient gel electrophoresis and 16S rRNA gene sequencing analysis indicated that dietary B. subtilis 2-1 at 105 and 107 CFU g?1 inhibited most of the Proteobacteria including those in genus Vibrio. Dietary B. subtilis 2-1 at 109 CFU g?1 not only decreased the abundance and species of genus Vibrio, but also increased the intensity of genera Psychrobacter and Bacillus. A specific dosage of dietary B. subtilis 2-1 could increase the growth and modulate the intestinal microbiota of sea cucumber; thus it might be a novel probiotic for keeping the health of sea cucumber.  相似文献   

14.
Ciliates are very important components in most marine ecosystem.They are trophic link between the microbial food web and grazing food chain.In this study,ciliates were collected from 11 sites in the southern South China Sea(SCS) during August 25 to September 28,2011.Their composition and distribution at the surface and 75 m deep depth of the ocean were studied.A total of 30 species belonging to 22 genera were identified,and 22 species of 15 genera were Tintinnids.Eutintinnus fraknoii and E.stramentus were the most common species.The other dominants were strombidiids ciliates including Strombidium conicum and S.globosaneum,which were followed by the tide form,Mesodinium pulex.Ciliates abundance ranged from 46 ind L~(-1) to 368 ind L~(-1) in the open sites,46–368 ind L~(-1) at surface and 73–198 ind L~(-1) at 75 m deep layer.In the Yongshu reef,ciliates abundance ranged from 167 ind L~(-1) to 365 ind L~(-1) in the water column,similar to that in Sanya coral reef waters.Ciliates composition showed obvious difference between surface and 75 m deep layer at station S2(P 0.05),while no similar result was observed at other sites.At 75 m deep layer,salinity was negatively related to mixed layer depth(P 0.05),but positively to chlorophyll a concentration(P 0.05),indicating that the change of vertical mixing in water column influenced vertical distribution of ciliates in the southern SCS.  相似文献   

15.
We measured the organic content and sinking velocities of biodeposits from two scallop species (Chlamys farreri, Patinopecten yessoensis) and abalone (Haliotis discus hannai) that were cultured on suspended long-lines. Measurements were conducted every two months from April 2010 to February 2011. The shellfish were divided into three size groups (small, middle, and big sizes). At each sample point, we assessed biodeposit organic content, average sinking velocity, the frequency distribution of sinking velocities, and the correlation between organic content and sinking velocity. The organic content of biodeposits varied significantly among months (P<0.05) and the pattern of change varied among species. Sinking velocities varied significantly, ranging from <0.5 cm/s to >1.9 cm/s. The sinking velocities of biodeposits from C. farreri and P. yessoensis were 0.5–1.5 cm/s and from H. discus hannai were <0.7 cm/s. The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C. farreri (P<0.001) and P. yessoensis (P<0.05).  相似文献   

16.
Polychaetes provide an excellent food resource for fish and represent the dominant zoobenthos in marine ecosystems. Diel variation in the rates of metabolism and ammonia-N excretion of Marphysa sanguinea were studied. The worms were grouped according to their wet body weight into small (S; 1.24±0.06 g), medium (M; 4.00±0.30 g), and large (L; 8.54±1.08 g) categories. Their weight-specific metabolic rates, based on aerobic respiration (R), were measured at 16°C (±0.2°C) and classed as either routine (R R) or standard (R S) rates. Both respiration types decreased with increasing body weight. Respiration was described by R = a W b, where b was -0.400 9 and -0.532 0 for R R and R S, respectively. Diurnal changes in R S for each group was relatively flat, with a slightly increasing trend with time, but was relatively stable as a whole. R R of the diurnal variation of worms was higher than R S, but both had similar overall trends. The peak values of specific dynamic action (SDA) (R SDA) in the S, M, and L groups were 2.704, 1.149, and 0.682 mg/(g?h), respectively. The durations of SDA were 13, 6, and 6 h, respectively and the energy expenditures of SDA were 377.98, 117.34, and 74.94 J/g, respectively. These data indicate that the metabolic rates were higher in smaller individuals, which is advantageous for their rapid growth.  相似文献   

17.
Soil Organic Carbon(SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle–Size Distribution(PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios(0%, 15%, 30%, 45%, 60% and 90%), slope lengths(2 m, 4 m), fertilizer treatments(unfertilized control(CK), compound N–P–K fertilizer(CF), and organic fertilizer(OF)) on SOC loss and the SOC enrichment ratio(ERSOC) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more claysized particles(2 μm) and silt-sized particles(2-50 μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERSOC 1. ERSOC was positively correlated with ER_(clay)(2 μm)(R~2 = 0.68) and ERfine silt(2–20 μm)(R~2 = 0.63), and from all thesize particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized particles(50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized particles and fine silt-sized particles, thus we conclude that as the eroded sediment particles became finer, more SOC was absorbed, resulting in more severe SOC loss.  相似文献   

18.
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.  相似文献   

19.
Sediment delivery ratio can be used as a measure of sediment connectivity and it can be linked to the structural connectivity(morphological unit, slope length, slope steepness, travel time) of a basin and to the functional connectivity(rainfall-runoff processes at morphological unit scale). In this paper the sediment connectivity approach was applied at basin scale both using Sediment Delivery Distributed(SEDD) model, which takes into account the hillslope sediment transport, and sediment yield measurements carried out at SPA2 experimental basin(Sicily, Italy). The expression of the sediment delivery ratio SDRi of a morphological unit was modified for highlighting two components corresponding to the structural(SDR_(L,i)) and functional(SDR_(F,i)) sediment connectivity, respectively. For SPA2 basin the frequency distribution of the travel time of each morphological unit was used to estimate the coefficient βL of the structural component of the sediment delivery ratio of each morphological unit. Then, using the sediment yield measurements carried out at the outlet of the experimental SPA2 basin in the period April 2000-March 2015, the SEDD model was calibrated at event scale for estimating the coefficient βF of the functional component of the sediment delivery ratio. At event scale the developed analysis stated that the functional connectivity is dependent on the magnitude of erosion events. Intermediate and high events, which were characterized by the lowest values of the functional coefficient, determine a more high functional connectivity and are characterized by a more efficient sediment transport along the hillslopes. Finally, at annual scale, the model was calibrated for the period 2000-2015 and relationships for estimating the coefficient βF,a of the functional component of the sediment delivery ratio taking into account the intensity of erosion events occurring in each year were determined. At annual scale, the analysis demonstrated that the functional coefficient was always greater than the landscape coefficient and the sediment connectivity was always controlled by the low values of the functional component.  相似文献   

20.
In present study, the inbreeding depression (ID) of growth and survival of Manila clam (Ruditapes philippinarum) was investigated at larval and juvenile stages. Nine inbred families (A 2, B 2, C 2, D 2, E 2, F 2, G 2, H 2 and I 2) were established by mating within nine full-sib families with expected inbreeding coefficient of 0.25. Inbred families showed significant differences in shell length and hatching rate of D-larvae (straight-hinged larvae). The larvae of the nine inbred families grew slower than those of control group (CG), and their ID value ranged from 0.81% ± 6.09% to 16.10% ± 1.49%. The ID value of larval survival rate varied between 27.47% ± 9.36% and 70.50% ± 13.66%. The ID was also detected for juvenile growth in A 2, B 2, C 2, and D 2, which ranged from 4.60 ± 2.21 to 17.71 ± 7.73. The A 2 family maintained the highest juvenile survival rate, whereas the other inbred families exhibited ID values varying between 62.79% ± 4.54% and 96.14% ± 0.87%. The linear relationship of estimated ID between growth and survival was negatively correlated (R = ?0.434, P < 0.05). The results of this study suggested that the ID of growth was common at the larval stage but was less prevalent at juvenile stage. In contrast, the ID of survival increased from larval to juvenile stage. A better understanding of the effect of inbreeding may aid to selective breeding of Manila clam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号