首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Beijing-Tianjin Sand Source Control Project(BTSSCP), a national ecological restoration project, was launched to construct an ecological protection system in the Beijing-Tianjin sand source areas to reduce dust hazards. The carbon sequestration dynamics can be used to assess the ecological effects of an ecological restoration project. Here, we conducted vegetation and soil study to assess the carbon sequestration in the plantations with 10 years old stands in Beijing-Tianjin sand source areas. The results at the site scales indicated that the average net increase of plantation ecosystem carbon stock was 33.8 Mg C ha~(-1), with an annual increase rate of 3.38 Mg C ha~(-1) yr~(-1). The average net increase of carbon varied among regions, vegetation types, and forest management activities. Soil bulk density in the top soil decreased slightly after 10-year implementation of the project. Coniferous forests and shrubs are suitable plant species for sand source areas.Natural restoration in the plantations is a practical and feasible and promising approach for enhancing ecosystem carbon sequestration potential.  相似文献   

2.
Carbon sequestration occurs when cultivated soils are re-vegetated. In the hilly area of the Loess Plateau, China, black locust(Robinia pseudoacacia) plantation forest and grassland were the two main vegetation types used to mitigate soil and water loss after cultivation abandonment. The purpose of this study was to compare the soil carbon stock and flux of these two types of vegetation which restored for 25 years. The experiment was conducted in Yangjuangou catchment in Yan′an City, Shaanxi Province, China. Two adjacent slopes were chosen for this study. Six sample sites were spaced every 35–45 m from summit to toe slope along the hill slope, and each sample site contained three sampling plots. Soil organic carbon and related physicochemical properties in the surface soil layer(0–10 cm and 10–20 cm) were measured based on soil sampling and laboratory analysis, and the soil carbon dioxide(CO2) emissions and environmental factors were measured in the same sample sites simultaneously. Results indicated that in general, a higher soil carbon stock was found in the black locust plantation forest than that in grassland throughout the hill slope. Meanwhile, significant differences in the soil carbon stock were observed between these two vegetation types in the upper slope at soil depth 0–10 cm and lower slope at soil depth 10–20 cm. The average daily values of the soil CO2 emissions were 1.27 μmol/(m2·s) and 1.39 μmol/(m2·s) for forest and grassland, respectively. The soil carbon flux in forest covered areas was higher in spring and less variation was detected between different seasons, while the highest carbon flux was found in grassland in summer, which was about three times higher than that in autumn and spring. From the carbon sequestration point of view, black locust plantation forest on hill slopes might be better than grassland because of a higher soil carbon stock and lower carbon flux.  相似文献   

3.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

4.
In recent decades,overgrazing and the warming and drying climate have resulted in significant degradation of alpine grasslands in the source region of the Yellow River.However,research into the relationships between vegetation and soil properties has mainly focused on an overall degradation stage,and few studies have investigated which soil properties can impact vegetation change at different stages of degradation.Vegetation and soil properties were observed in the field and measured in the laboratory for different predefined stages of degradation for alpine grassland in Maduo County in the source region of the Yellow River.Results show that:1)the aboveground and belowground biomass,soil organic carbon,total nitrogen,nitrate,and ammonia content did not decrease significantly from the intact to moderate degradation stage,but decreased significantly at severe and very severe stages of degradation;2)dominant plant species shifted from gramineaes and sedges to forbs;3)the species richness and Pielou evenness indices decreased significantly at the very severe degradation stage,the Shannon-Wiener diversity index increased at the slight and moderate degradation,but decreased at the severe and very severe degradation stages;4)soil bulk density was the strongest soil driver for changes in the plant biomass and community diversity at the intact,slight and moderate degradation stages,whereas soil organic carbon and nitrate nitrogen content were the main driving factors for changes in plant biomass and diversity at the severe and very severe degradation stages.Our results suggest that there may be different interactions between soil properties and plants before and after moderate stages of degradation.  相似文献   

5.
Carbon sequestration in forest vegetation of Beijing at sublot level   总被引:1,自引:1,他引:0  
Based on forest inventory data (FID) at sublot level,we estimated the carbon sequestration in forest vegetation of Beijing,China in 2009.In this study,the carbon sequestration in forest vegetation at sublot level was calculated based on net biomass production (ΔB) which was estimated with biomass of each sublot and function relationships between ΔB and biomass.The biomass of forested land was calculated with biomass expansion factors (BEFs) method,while those of shrub land and other forest land types were estimated with biomass,coverage and height of referred shrubs and shrub coverage and height of each sublot.As one of special forested land types,the biomass of economic tree land was calculated with biomass per tree and tree number.The variation of carbon sequestration in forest vegetation with altitude,species and stand age was also investigated in this study.The results indicate that the carbon sequestration in forest vegetation in Beijing is 4.12 × 106 tC/yr,with the average rate of 3.94 tC/(ha·yr).About 56.91% of the total carbon sequestration in forest vegetation is supported by the forest in the plain with an altitude of < 60 m and the low mountainous areas with an altitude from 400 m to 800 m.The carbon sequestration rate in forest vegetation is the highest in the plain area with an altitude of < 60 m and decreased significantly in the transitional area from the low plain to the low mountainous area with an altitude ranging from 200 m to 400 m due to intensive human disturbance.The carbon sequestration of Populus spp.forest and Quercus spp.forest are relatively higher than those of other plant species,accounting for 25.33% of the total.The carbon sequestration in vegetation by the forest of < 40 years amounts to 45.38% of the total.The carbon sequestration rate in forest vegetation peaks at the stand age of 30–40 years.Therefore,it would be crucial for enhancing the capability of carbon sequestration in forest vegetation to protect the forest in Beijing,to limit human disturbance in the transitional area from the plain to the low mountain area,and to foster the newly established open forest.  相似文献   

6.
Degradation of slopes due to shallow landslide and the subsequent erosional processes are a big challenge on the application of soil bioengineering techniques; that is the use of plants as main structural components of a slope protection and conservation system. An optimal application of soil bioengineering techniques should include not only the technical factor of plants as structural components but also the ecology of species and the plant adaptations to disturbances, which is crucial if a longterm successful slope restoration system is intended. Ferns are a dominant understory vegetation species in the forest of Japan, but its characteristics and influences on the recovery of shallow landslide scars have not been fully studied yet. This study aims to find out the ecological characteristics of fern species through the calculation of ecological indicators and the quantification of the morphological features of specimens growing on disturbed and non-disturbed forest slopes in Japan. Gleichenia japonica was found as the vegetation species with biggest ecological indicators on both slopes. The analysis of morphological characteristics of the specimens growing on both sites showed that the development of the specimens is focused in below-ground characteristics. The pull-out force of Gleichenia japonica root system as an indicator of ecological adaptation to a constraint environment and morphological characteristics quality is influenced by height and root length according to the principal component analysis. The eco-morphological characteristics of species can be used as an indicator of an optimal element in soil bioengineering establishment for slope conservation proposes. The long and fibrous root system could be placed on forest roads, steep or small slopes where space limitation is an issue for the establishment of bigger species and if the slope conditions allow it, it can control soil losses due to rainfall and provide stability.  相似文献   

7.
《山地科学学报》2020,17(3):588-601
Variations in phytogeography of Jal Al-Zor wadi system in Sabah Al Ahmad Nature Reserve, an arid national park in Kuwait, in relation to physiographic and edaphic conditions were investigated using alpha diversity and multivariate analyses. A total of 66 plant species were recorded at low-relief and high-relief wadis. Altitude and slope gradients, grain size distribution and soil texture properties had a significant relationship with plant cover and plant diversity. There was a high diversity of life-forms along the wadi system with a dominant of therophytes(annuals) particularly in spring after winter rainfalls. Chamaephytes and hemicryptophytes were the dominant perennial life-forms. A chorological analysis documents the strong effect of Saharo-Arabian chorotype on the vegetation of the study area. Cluster analysis clarified eight vegetation assemblages along altitude and slope gradients within the wadi system. Alpha diversity of plant species was greater in plant assemblages at low-relief wadis than at high-relief wadis. Vegetation structure in this study showed that phytogeographically, wadis of Jal Al-Zor were closely related to the wadis in the Arabian deserts. The slope gradient pattern and edaphic conditions of plant assemblages and plant diversity in the conserved wadis of Jal Al-Zor may be suggested as a reference model for restoration strategy of disturbed low elevated wadis in the surrounding desert regions.Restoration would include propagation of suitable plants such as Stipagrostis plumosa-Haloxylon salicornicum-Rhanterium epapposum.  相似文献   

8.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

9.
It is widely accepted that global warming, which results from the increase of carbon dioxide(CO2) in the atmosphere, has a negative impact on human beings. Forests are the largest terrestrial ecosystem and play an important role in carbon sequestration. Many studies have documented that a mixed-species forest can sequester more carbon than single species forests, depending on the site conditions. Therefore, uneven-aged mixed-species forest management has been receiving more and more attention. In 2008, an experiment with five silvicultural models for Pinus massoniana(Chinese red pine) plantation, i.e., four transformation treatments(A1-A4) and one control treatment(A5) was conducted in the Experimental Center of Tropical Forestry of Chinese Academy of Forestry in Pingxiang City, in southwestern Guangxi Zhuang Autonomous Region, southern China. The four transformation treatments(A1-A4) enriched Castanopsis hystrix, Manglietia glance, Erythrophleum fordii and Quercus griffithii with differed richness and composition after thinning(removed 70% of trees), while no silvicultural treatment was used in the control treatment A5. In this study, we compared the carbon sequestration capacity of these five silvicultural models based on periodic annual increment and growth rate. Our results indicated that all the transformation treatments performed significantly better in carbon sequestration than the control treatment. A significant difference was also observed amongst the transformation treatments. Moreover, the transformation treatment A1 with enrichment species Castanopsis hystrix(350 trees·ha^-1) and Manglietia glance(350 trees·ha^-1) was determined to be the optimal model for maximum carbon sequestration because of its high tree-level growth rate and high economic value of enriched plantings, which could be popularized in other places. Our results further confirmed that management using mixed-species forests is a better approach to combat climate change than using monoculture forests.  相似文献   

10.
Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities, thereby contributing to the difficulty in identifying spatiotemporal variations and influencing factors of plant diversity. A unique estuarine wetland gradient system(UEWGS) consisting of soil, vegetation, heat, distance, landscape, and anthropogenic gradients was established based on the ecological features of estuarine wetland through remote sensing and field investigation methods. It resolved the complicated land surface characteristics, covered all aspects of factors influencing plant diversity, and possessed distinct spatiotemporal heterogeneities. The Yellow River Delta, the largest estuarine wetland in the northern China, was selected as the study area to demonstrate UEWGS in four seasons in 2017. A total of 123 species were recorded with considerable seasonal difference. Phragmites australis, Suaeda salsa, and Tamarix chinensis were the dominant species, and crop species also played important roles. In single effect, all aspects of gradients exerted significant influences, yet only vegetation gradient possessed significant influences in all seasons. In comprehensive effect, soil, vegetation, heat, and distance gradients showed significant gross influences. Moisture content in soil gradient and net primary productivity in vegetation gradient possessed significant net influences in all seasons and can be considered as the main driving factor and indicator, respectively, of plant diversity. The results validated the significance of UEWGS in revealing the plant diversity spatiotemporal characteristics and influencing factors, and UEWGS possessed universal applicability in the spatiotemporal analysis of plant diversity in estuarine areas.  相似文献   

11.
Andean grasslands ecosystems are fragile environments with rigorous climatologic conditions and low and variable food for the grazing. The Apolobamba area is located in the Bolivian Andean Mountains. Its high grasslands provide a natural habitat for wild and domestic camelids such as vicuna(Vicugna vicugna) and alpaca(Lama pacos). The botanical diversity plays an essential role in maintaining vital ecosystem functions. The objectives of this research were to determine the seasonal changes in soil properties, to study the vegetation changes during the wet and dry seasons and the influence of soil properties and camelid densities on the vegetation in the Apolobamba grasslands. Four zones with different vicuna populations were selected to be studied. The following soil parameters were determined: total organic carbon, total nitrogen, available phosphorous, cation exchange capacity, exchangeable cations, pH and texture. The vegetation season changes were studied through botanical identification, above-ground biomass, plant cover and species richness. Results showed that some soil properties such as C/N ratio, CEC, silt and clay percentages kept stable against the seasonal changes. Generally, soil nutrients were relatively higher during the dry season in the surface and subsurface. The results did not point out the predominant vegetation growth during the wet season. The seasonal vegetation growth depended on each species. Thegood soil fertility corresponded to the highest plant cover. Soil fertility presented no influence on the above-ground biomass of the collected species. The negative influence of camelid grazing on soil properties could not be assessed. However, overgrazing could affect some plant species. Therefore, protection is needed in order to preserve the biodiversity in the Andean mountain grasslands.  相似文献   

12.
A pot experiment was conducted in the Institute of Tianlong Ecology of Baotou City in Inner Mongolia, China, to investigate the effects of the application of biofertilizers and super absorbent polymers (SAP) on plant growth and soil improvement in arid mining area soil. Two typical species, namely, Syringa oblata Lindl. (SO) and Medicago sativa L. (MS), were present in the Bayan Obo mining area and used as representatives of shrubs and herbaceous plants in the pot experiment. (1) Biofertilizers and SAP significantly increased the tree height, the ground diameter of SO, and the total biomass of MS and improved the soil fertility of the mining area, especially its biological fertility, compared with those of the control group (CK). The application of biofertilizers and SAP decreased the mining soil pH and significantly increased available nitrogen, available phosphorus, available potassium, and soil organic matter. (2) After 180 days of growth, the microbial population (bacteria, fungi, and actinomycetes) and soil microbial biomass carbon and nitrogen significantly increased. Microbial ratios C: N significantly decreased compared with those of CK. (3) T5 and T6 treatments with the following dosages might be the optimum selection for the improvement of the studied mining area soil: 20 g SAP + 15 g biofertilizers (SO), 100 g/m2 SAP + 150 g biofertilizers (MS); 20 g SAP + 30 g biofertilizers (SO), and 100 g/m2 SAP + 200 g biofertilizers (MS). This study provided a promising reference for conducting future field studies and the local vegetation restoration.  相似文献   

13.
Wenchuan earthquake on 12 May 2008 triggered numerous landslides, which disturbed vast areas of vegetation in northwest Sichuan. However, based on our primary field investigation at Xiejiadian landslide in July 2009, we found an obvious increase of the number of plant species and then we made a hypothesis that, after earthquake, vegetation at this landslide might recover by itself. In this paper, we conduct a newly field investigation at Xiejiadian landslide during November 2014 to verify this hypothesis. We investigated plant species composition at total 56 sites (trees 4, shrubs 16 and herbs 36, respectively), and calculated the Schluter’s variance ratio, important values, x2 test, association coefficient, Ochiai index, Pearson’s and Spearman’s correlation coefficients, and Ecological species groups. Species sharply increased to 84 species belonging to 66 genera and 54 families, forming a complete life form containing trees, shrubs, herbs, and ground layers while only herbs detected in 2009. Moreover, an overall positive and moderately related interspecies association was detected for most of species pairs. Of total 84 species, twenty five were identified as dominant species and could be divided into four positive ecological species groups. This study verified our proposed hypothesis of self-recovery of vegetation in landslide triggered by the earthquake, and found Alnus cremastogyne, Rhus chinensis, Litsea cubeba, Vitis piasezkii and Anemone vitifolia would play a constructive role during the continuing succession of vegetation at Xiejiadian landslide.  相似文献   

14.
Re-vegetation plays a fundamental role for erosion control and plant recovery in lands affected by gully erosion. Bioengineered practices facilitate the gullies rehabilitation. Objectives of the research were: 1) Identify taxonomically the pioneer vegetation on each gully section; 2) Characterize vegetation distribution preferences and 3) Assess structural/functional traits to recognize erosion control key species. Bioengineering was applied in a watershed belonging to Sierra Madre del Sur, at Oaxaca, Mexico, on eight gullies, with local support and minimal investment. "La Mixteca" is a poor ecological and socio-economic region, comparable to other regions of the world. The Initial Floristic Composition(IFC) inventory is the baseline of the successional process. The transect method was used to determine the colonization of species. Cover abundance of registered species was estimated using the semi-quantitative scale of Braun-Blanquet. This procedure was repeated in five different positions(floor, hillslopes and tops), in the cross section of the gully. Throughcorrespondence analysis and clustering, the distribution of species was analyzed. Adequate responses were obtained in soil retention(quantity) and plant cover(existence and diversity); as measurable indicators of the bioengeneering works efficiency. Occupation of soil by native species from the Tropical Deciduous Forest was favored using live barriers. We detected species guilds with spatial distribution preferences in the gullies cross section. Plant cover characterization includes: native colonizer species, herbaceous, shrubby and trees of the forest community bordering the gully area, with cover abundance and structural/functional traits, useful to protect degraded areas. This spatial occupation process of plants responds to a secondary succession in gullies, where the proposed IFC model is correctly represented through bioengineering. Natural establishment of plants was successful by traits of species such as extensive root system and sexual/vegetative reproduction.  相似文献   

15.
Little is known about whether soil microbial population dynamics are correlated with forest succession.To test the hypotheses that(1) soil microbial composition changes over successional stages,and(2) soil microbial diversity is positively correlated with plant species diversity,we determined the soil microbial populations,community composition,and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China.The soil microbi...  相似文献   

16.
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change.Using phospholipid fatty acids(PLFA),we investigated soil microbial community composition along an elevational gradient(3094~4131 m above sea level) on Mount Yajiageng,and we explored the impact of plant functional groups and soil chemistry on the soil microbial community.Except for Arbuscular Mycorrhizal fungi(AM fungi) biomarker18:2ω6,9 increasing significantly,other biomarkers did not show a consistent trend with the elevational gradient.Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 μmol per g organic carbon(OC),which had the maximum value at the highest site.Bacterial PLFAs exhibited a similar trend with total PLFAs,and its mean values ranged from0.82 to 1.81 μmol(g OC)~(-1).The bacterial to fungal biomass ratios had the minimum value at the highest site,which might be related to temperature and soil total nitrogen(TN).The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site.Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model.Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN.Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community,and the interaction between them had no impact on the soil microbial community maybe because long-term grazing greatly reduces litter.In sum,although there were obvious differences in soil microbial communities along the elevation gradient,there were no clear elevational trends found in general.Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community.Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.  相似文献   

17.
湿地作为缓解气候变化的关键生态系统, 在碳捕获与碳封存方面发挥着不可替代的作用。湿地碳储量和影响因素的分析以及固碳潜力的预测, 对湿地生态保护与管理、国家"双碳"目标实现具有重要意义。应用ArcGIS10.8对《贵州省湿地保护发展规划》(以下简称规划)的3个时期(分别是: 1999-2009年; 2010-2018年; 2018年至今)湿地分布图采用遥感目视解译的方式进行矢量化并根据贵州省岩溶发育强度进行分区。采用生命带研究法与生物量估算法等对贵州省湿地面积和碳储量变化进行估算分析, 对重要湿地碳储量与单位面积碳储量进行估算并与全省湿地进行对比, 采用固碳潜力计算模型对贵州省重要湿地固碳潜力进行估算, 应用Origin软件对各相关影响因子进行数据分析。结果表明: ①贵州省湿地规划前期的面积为216 526.95 hm2, 规划中期面积为209 726.85 hm2、规划后期面积为255 440.53 hm2, 总体表现为先下降再升高, 总体面积增加38 913.58 hm2; ②贵州省湿地碳储量变化为: 规划前期为5.97×105 t, 规划后期为3.78×106 t, 是规划前期的6倍以上, 碳储量增加明显。其中, 贵州省重要湿地碳储量为3.24×106 t, 占全省湿地碳储量85.71%, 固碳潜力十分显著; ③贵州省重要湿地的固碳潜力为1.14×104 t C/a, 预计到2030和2060年, 湿地总固碳量分别达到7.99×106 t C和8.34×106 t C; ④温度、DIC浓度、有机碳含量与面积对贵州省重要湿地的碳储量影响较大, 重要湿地碳储量与DIC浓度、有机碳含量以及面积呈正相关, 而与温度呈负相关关系。对贵州省的湿地碳储量估算与碳中和潜力分析不仅可以了解贵州省湿地碳封存现状, 还可为区域湿地生态系统在"3060"双碳目标的贡献上提供理论参考。   相似文献   

18.
《山地科学学报》2020,17(8):1974-1988
In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.) from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer's life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer's life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.  相似文献   

19.
The 5.12 Earthquake in 2008 and 8.14 Debris Flow in 2010 resulted in large-scale landslides that disturbed vast areas of vegetation in the Hongchun Gully, Wenchuan County, China. To define the specific characteristics of vegetation restoration during natural recovery after catastrophic events,vegetation species composition and interspecific associations were investigated on this typical landslide. Field survey data selected from a total of 51 sample plots belonged to seven belt transects and were analysed by Schluter's variance ratio, pearson's chi-squared test, Spearman's correlation coefficients and ecological species groups. Plant communities on the landslide consisted of 78 species, 65 genera and52 families. Of the total of 78 species, 25 are identified as dominant species, among which Camptotheca acuminate, Toxicodendron vernicifluum, Coriaria nepalensis, Robinia pseudoacacia, Buddleja alternifolia, Anemone vitifolia and Nephrolepis auriculata play a constructive role during the natural afforestation. Moreover, according to environmental and ecological factors, these 25 dominant species could be divided into four ecological species groups.This study found that even though the landslide had frequently suffered from interference due to heavy rain, the vegetation succession processes are ongoing,and it is now at a shrub–herb community succession stage, which indicates that vegetation can naturally recover in the denuded sites. This study provides a useful insight into the ecological interactions and interdependence between plant species during the natural recovery of vegetation and provides valuable information on vegetation recovery modelling in the landslide area.  相似文献   

20.
Impact of anthropogenic disturbance on species diversity and vegetation structure of a lowland tropical rainforest was studied in the foothills of Eastern Himalaya, India. Tree species richness, density, basal area and the diversity indices were found significantly (P<0.05) decreased with the increasing level of disturbances whereas, shrub density, basal area and herb density significantly increased with increasing disturbance level. In case of shrubs, Simpson’s dominance index significantly (P<0.007) increased along the disturbance gradient, whereas Pielou’s evenness index significantly (P<0.005) decreased with an increasing level of disturbance. Shannon-Weiner diversity index for herbs significantly (P<0.016) increased with increasing disturbance whereas, Simpson’s dominance index was significantly (P<0.013) declined along the disturbance gradient. Results revealed that 10–50 cm dbh classes constituted the highest stem density, and highest basal area was recorded in the >100 cm dbh class in all three sites. Density of the matured trees decreased with increasing DBH whereas, tree basal area tended to increase with increasing DBH in all three sites. Tree species richness was highest in the lower DBH classes. 62.07% of the total tree species regenerated in the largely undisturbed site followed by 50% in the mildly disturbed and 26.32% in the highly disturbed site. The overall regeneration condition was found to be good in the largely undisturbed site. Mildly disturbed site exhibited fair regeneration and so was in the highly disturbed site. Discernable variations in species composition, diversity, regeneration and tree population structure revealed the impact of anthropogenic disturbances on rainforest vegetation dynamics. Higher degree of disturbance was furtherly found not only affecting species diversity but also promoting the growth of invasive weed species. Dominance of Hydnocarpus kurzii and Crypteronia paniculata in the highly disturbed site also indicated that these less-valued timber species may benefit from the vegetation mosaic produced by the disturbance; so differences in abundance of these species may be useful for bio-indication. Furthermore, present study suggests the need of adequate biodiversity conservation measures and adaptation of sustainable forest management approaches in disturbed areas of lowland tropical rainforest in the foothills of eastern Himalaya, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号