首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variations and trends in extreme climate events are more sensitive to climate change than the mean values,and so have received much attention.In this study,twelve indices of temperature extremes and 11 indices of precipitation extremes at 32 meteorological stations in Hengduan Mountains were examined for the period 1961-2008.The results reveal statistically significant increases in the temperature of the warmest and coldest nights and in the frequencies of extreme warm days and nights.Decreases of the diurnal temperature range and the numbers of frost days and ice days are statistically significant.Regional averages of growing season length also display the trends consistent and significant with warming.At a large proportion of the stations,patterns of temperature extremes are consistent with warming since 1961:warming trends in minimum temperature indices are greater than those relating to maximum temperature.As the center of the Shaluli Mountain,the warming magnitudes decrease from inner to outer.Changes in precipitation extremes is low:trends are difficult to detect against the larger inter-annual and decadal-scale variability of precipitation,and only the wet day precipitation and the regional trend in consecutive dry days are significant at the 0.05 level.It can be concluded that the variation of extreme precipitation events is not obvious in the Hengduan Mountains,however,the regional trends generally decrease from the south to the north.Overall,the spatial distribution of temporal changes of all extreme climate indices in the Hengduan Mountains illustrated here reflects the climatic complexity in mountainous regions.  相似文献   

2.
Crop production vulnerability to climate change in Northwest China depends upon multiple socio-ecological factors.Knowledge regarding the specific indicators and methods suitable for assessing crop production vulnerability is limited that address spatiotemporal variations across large and diverse zones.We propose an integrated assessment framework to quantify the vulnerability of crop production derived from crop yield sensitivity,exposure,and adaptive consequences across 338 counties in Northwest China during 1995–2014.Maps on these indices were generated using climatic and socioeconomic data with spatial mapping method.Different clusters of crop production vulnerability were then identified by a k-means cluster method to assess the heterogeneity of vulnerability at a regional scale.Results show that the vulnerability of crop production in 338 counties varies significantly in both geographical and socioeconomic aspects,specifically,vulnerability indicators are generally higher in Minhe,Menyuan,Hualong,and Ledu,and Xayar had the lowest value of vulnerability.This indicates that adaptation strategies for regional crop production need to focus on several levels,from the improvement of adaptive ability to crop yield fluctuation by promoting irrigation agriculture and optimizing limited water resources in typical arid areas,to agriculture-related financial policies incentivizing the capital investment and technology upgrade of crop production on traditional farming regions.This study provides convincing evidence that the factors related to socioeconomic policies are particularly alarming when a crop’s risk is compared to precipitation fluctuations.We recommend these findings be used to facilitate regional agriculture planning to reduce crop production vulnerability and ensure sustainable food security in specific regions.  相似文献   

3.
The Tibetan Plateau(TP) is one of the most sensitive areas and is more susceptible to climate change than other regions in China. The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities. However, the definition, influencing factors, and characteristics of light precipitation in the TP have not been accurately explained. This study investigated the variation characteristics of light precipitation with intensities(Pre) of 0.1–10.0 mm/d b...  相似文献   

4.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

5.
Introduction A set of reddish clay-silt-sized sediments named red clay underlying the Quaternary loess-paleosol sequence widely distribute in the Chinese Loess Plateau. The thickness of the red clay sediments ranges from decades of meters to over 100 m (Evan et al.1991,Mo and Derbyshire 1991, SUN et al. 1997&1998, DING et al. 1999, GUO et al. 2001, QIANG et al. 2001). Previous studies show that not only loess-paleosol (e.g.LIU et al.1985,AN et al.1990,DING et al.1992),but also red …  相似文献   

6.
《山地科学学报》2020,17(3):556-571
The understanding of temperature trends in high elevation mountain areas is an integral part of climate change research and it is critical for assessing the impacts of climate change on water resources including glacier melt, degradation of soils, and active layer thickness. In this study, climate changes were analyzed based on trends in air temperature variables(T_(max), T_(min), T_(mean)), and Diurnal Temperature Range(DTR) as well as elevation-dependent warming at annual and seasonal scales in the Headwaters of Yangtze River(HWYZ), Qinghai Tibetan Plateau. The Base Period(1965-2014) was split into two subperiods; Period-Ⅰ(1965-1989) and Period-Ⅱ(1990-2014) and the analysis was constrained over two subbasins; Zhimenda and Tuotuohe. Increasing trends were found in absolute changes in temperature variables during Period-Ⅱ as compared to Period-Ⅰ.T_(max), T_(min), and T_(mean) had significant increasing trends for both sub-basins. The highest significant trends in annual time scale were observed in T_(min)(1.15℃ decade~(-1)) in Tuotuohe and 0.98℃ decade~(-1) in Zhimenda sub-basins. In Period-Ⅱ, only the winter season had the highest magnitudes of T_(max) and T_(min)0.58℃ decade~(-1) and 1.26℃ decade~(-1) in Tuotuohe subbasin, respectively. Elevation dependent warming analysis revealed that T_(max), T_(min) and T_(mean) trend magnitudes increase with the increase of elevations in the middle reaches(4000 m to 4400 m) of the HWYZ during Period-Ⅱ annually. The increasing trend magnitude during Period-Ⅱ, for T_(max), is 1.77, 0.92, and 1.31℃ decade~(-1), for T_(min) 1.20, 1.32 and 1.59℃ decade~(-1),for T_(mean) 1.51, 1.10 and 1.51℃ decade~(-1) at elevations of4066 m, 4175 m and 4415 m respectively in the winter season. T_(mean) increases during the spring season for 3681 m elevations during Period-Ⅱ, with no particular relation with elevation dependency for other variables. During the summer season in Period Ⅱ, T_(max), T_(min), T_(mean) increases with the increase of elevations(3681 m to 4415 m) in the middle reaches of HWYZ. Elevation dependent warming(EDW), the study concluded that magnitudes of T_(min) are increasing significantly after the 1990s as compared to T_(max) in the HWYZ. It is concluded that the climate of the HWYZ is getting warmer in both sub-basins and the rate of warming was more evident after the 1990s. The outcomes of the study provide an essential insight into climate change in the region and would be a primary index to select and design research scenarios to explore the impacts of climate change on water resources.  相似文献   

7.
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.  相似文献   

8.
Biodiversity distribution patterns are a basic and long-standing but crucial aspect of ecology research.These patterns form the primary source of data used to develop biodiversity protection practices,especially in mountain ecosystems.Shrubs comprise one of the main types of vegetation on the Qinghai–Tibetan Plateau,where they serve vital ecological functions.In this study,we used a community phylogenetic approach to examine the distribution patterns of shrub communities along the longitudinal and latitudinal gradients on the northeastern Qinghai–Tibetan Plateau.We observed significant latitudinal trends in both the phylogenetic diversity(PD)and net relatedness index(NRI)values of shrub communities,such that the former decreased and the latter increased with increasing latitude.However,no significant PD,NRI and nearest taxon index(NTI)distribution patterns were observed along a longitudinal gradient.A further analysis revealed that the combination of temperature-related and precipitation-related climate variables most strongly affected the PD,NRI and NTI values of shrub communities,indicating that the latitudinal patterns in the PD,NRI and NTI of a shrub community may be determined mainly by interactions with these climate factors.  相似文献   

9.
Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming   总被引:2,自引:1,他引:2  
Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vege- tation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Kunlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.  相似文献   

10.
Interannual variability of the southern Yellow Sea Cold Water Mass   总被引:2,自引:0,他引:2  
Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through 2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.  相似文献   

11.
The Hengduan mountain area,located in the upper reaches of the Yangtze River of China,is an important ecological barrier that significantly impacts the climate and ecological environment of the surrounding region and western China as a whole.This paper introduces the gravity center model used to analyze the spatial-temporal variation patterns of vegetation Net Primary Productivity(NPP)from 2000 to 2015,which were determined by the use of MOD17 A3 NPP products.Additionally,the dominant driving factors of the spatial–temporal changes of vegetation NPP of the Hengduan Mountain area were quantitatively determined with a geographical detector over 2000-2015.The results revealed that:(1)From 2000 to 2015,there was an increasing trend of vegetation NPP in the Hengduan mountain area.Throughout the whole study region,the vegetation NPP with a mean value of 611.37 gC·m-2·a-1 indicated a decreasing trend from southeast to northwest in terms of spatial distribution.(2)The gravity centers of vegetation NPP in 2000-2015 were mainly concentrated in Zhongdian County.During the study period,the gravity center of vegetation NPP moved northward,which indicated that the increment and increasing rate of vegetation NPP in the northern parts were greater than that of the southern areas.(3)The vegetation NPP showed a moderately positive correlation with temperature,accumulated temperature(>10℃),and sunshine,while there was an overall negative relationship between NPP and precipitation.(4)The dominant factors and interactive dominant factors changed in different subregions over different segments of the study period.The dominant factors of most sub-regions in Hengduan mountain were natural factors,and the climate change factors played an increasingly greater role over the 16 years of the study period.  相似文献   

12.
Harmful algal blooms(HABs) have become a recurring problem, posing severe impacts on marine ecosystems, fisheries, mariculture industry, and even public health. In this study, the geographic information system(GIS) was utilized to determine spatial and temporal characteristics of HAB events in the coastal waters of Guangdong from 1980–2016. We analyzed distribution patterns and characteristics of HABs by dividing the coast of Guangdong into well-known bays, estuary and coastal waters. Results showed that there were a total of 337 HABs recorded in Guangdong coastal waters. Spatial and temporal distributions varied among dif ferent regions. Most HABs occurred in the Mirs Bay, followed by the west coast of Daya Bay, while a few occurred in the west and east coasts of Guangdong but with an increasing trend in the past two decades. HABs occurred mostly in warmer months of March to May in the western coast of Guangdong, March and April in Mirs Bay, April in Zhujiang(Pearl) River estuary, November in eastern coast of Guangdong. For Daya Bay, most HABs were reported between March and September.The most frequently occurring HABs species were Noctiluca scintillans, P haeocystis globosa, Skeletonema costatum and Scrippsiella trochoidea, occurring mostly in Mirs Bay, western Guangdong coast area, eastern Guangdong coast area and Zhujiang River estuary and Daya Bay, respectively. Ichthyotoxic blooms were more common than toxic blooms, and Heterosigma akashiwo, Chattonella marina, Karenia mikimotoi and P haeocystis globosa were the most common ichthyotoxic species. Our results provide baseline information useful for policy making and management of HABs in the region.  相似文献   

13.
Decreasing fish resources in estuaries is a subject of anthropogenic activities.Studies of the spatiotemporal distribution of fish eggs and larvae can help identify the status and processes underlying recruitment in a fishery.As the fifth largest river estuary in the world,the Huanghe(Yellow)River estuary(HRE)is a typical estuary that has been seriously affected by human activities.Annual surveys on ichthyoplankton and environmental factors were conducted in the months of May of 2005 and 2009-2016 in the HRE to investigate the spatiotemporal distribution of fish eggs and larvae and the associated influencing factors.A total of 23 and 20 species of eggs and larvae,respectively,were collected.The dominant orders were Perciformes(51.2%)and Clupeiformes(25.6%).The average number of fish species eggs and larvae were 6.0 and 4.1 in average abundance of 0.91 and 0.13 ind./m~3,respectively.The dominant species were mainly low-commercial-value small-sized fishes,such as Clupanodon punctatus,Hare,ngula zutnasi,and Acanthogobius,whereas certain traditional commercial fishes,such as Trichiurus lepturus,and Clupea pallasii,were not seen.Analysis of the fish egg and larval community revealed four temporal assemblages and two spatial assemblages.Salinity was the main factor on the spatial distribution of ichthyoplankton communities,the species number and Shannon-Weiner diversity index(H')of the fish egg and larval community near the river mouth with lower salinity were significantly lower than the community far away from the river mouth with higher salinity.In addition,increases of water temperature promoted the number and abundance of fish species eggs,and the areas of abundant prey tended to have a more diversified and abundant of ichthyoplankton species.In overall,overfishing,dam construction,and other human activities were the main drivers that led to the substantial decline in fishery resources in the HRE.  相似文献   

14.
This study presents a methodology for assessment of the condition of hiking trails (HTs) and their impact zones in the central part of the Low Tatra mountain range, based on comparison of two complex data sets gathered in 33 years apart. The first field investigation was performed in 1980 and 1981, and the second in 2013 and 2014. The main goal was to perform a landscape typology in order to assess the susceptibility of landscape complexes to occurrence of anthropogenic and natural destruction processes and to assess the condition and prospects of HTs and their impacts on the adjacent alpine environment. Landscape complexes were characterised by selected abiotic, biotic and technical parameters of HTs and their impact zones. Due to the high variability of these parameters over the length of the HTs, we had to decide on how to map them. This was done using a square grid with 100 m-sized cells. For each cell with HT, the parameters were assigned the typical value within that cell. In total, 26.3 km of HT were studied, stretching over 266 grid cells. On comparison of the two data sets, it was seen that, 64% (171 grid cells) display a generally positive condition, with 54% (143 grid cells) even exhibiting significant improvement or continuously positive state of their condition. 36% (95 grid cells) were in bad condition, including 3% (9 grid cells) whose state had deteriorated, and 2% (6 grid cells) whose state had significantly deteriorated, in the time between the two assessments.  相似文献   

15.
Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring the spatiotemporal patterns of coastal wetlands and reclamation in the Yangtze Estuary during the 1960s and 2015. Satellite images obtained from 1980 to 2015 and topography maps of the 1960 s were employed to extract changes of reclamation and coastal wetlands. Area-weight centroids were calculated to identify the movement trend of reclamation and coastal wetlands. The results show that from the 1960 s to 2015, the net area of natural wetlands declined by 574.3 km~2, while man-made wetlands and reclamation increased by 553.6 and 543.9 km~2, respectively. During the five study phases, the fastest areal change rate natural wetlands was –13.3 km~2/yr in the period of 1990–2000, and that of man-made areas was 24.7 km~2/yr in the same period, and the areal change rate of reclamation was 27.6 km~2/yr in the period of 2000–2010. Conversion of coastal wetlands mainly occurred in the Chongming Island, Changshu City and the east coast of Shanghai Municipality. Reclamation was common across coastal areas, and was mainly attributed to settlement and man-made wetlands in the Chongming Island, Lianyungang City and the east coast of Shanghai Municipality. Natural wetlands turned into farmlands and settlement, and man-made wetlands gained from reclamation of farmlands. The centroid of natural wetlands generally moved towards the sea, man-made wetlands expanded equally in all directions and inland, and the centroid of reclamation migrated toward Shanghai Municipality. Sea level rise, erosion-deposition changes, and reclamation activities together determine the dynamics of the Yangtze Estuary wetlands. However, reclamation activities for construction of ports, industries and aquaculture are the key causes for the dynamics. The results from this study on the dynamics of coastal wetlands and reclamation are valuable for local government to put forward sustainable land use and land development plans.  相似文献   

16.
Glacier shrinkage is a globally occurring phenomena.High-resolution change detection based on frequent mapping and monitoring of high-altitude glaciers is necessary to precisely evaluate future water availability and to understand glacier evolution under different climatic scenarios in the HindukushKarakoram-Himalayan(HKH) region.This also holds true for the Bhaga basin of the western Himalaya.This study investigates glacier and glacier lake changes in the Bhaga basin,over the last five decades ...  相似文献   

17.
The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (Sa) presents a general sinusoid pattern. To study the mechanism of the variability, annual cycles of Sa were simulated and a theoretical analysis based on the governing equations was reported.Three main factors are responsible for the variability: the Yellow Sea Warm Current (YSWC), the Changji-ang (Yangtze) River diluted water (YRDW) and the evaporation minus precipitation (E-P). From December to the next May, the variability of Sa is mainly controlled by the salt transportation of the YSWC. But in early July, the YSWC is overtaken and replaced by the YRDW which then becomes the most important controller in summer. From late September to November, the E-P gradually took the lead. The mass exchange north of the 37癗 line is not significant.  相似文献   

18.
The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a~(-1) and ~0.003℃ a~(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.  相似文献   

19.
In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.  相似文献   

20.
Xinjiang is located in the core China's ‘Belt and Road’ development, and northern Xinjiang is an important region for economic development. In recent years, due to the strong influence of global climate change and human disturbance, regional climate instability and ecological-economic-social system sensitivity have grown. In this paper, seasonal, interannual, interdecadal, spatial, abrupt, and periodic variations of temperature and precipitation in northern Xinjiang were analyzed using daily surface air temperature and precipitation data from 49 meteorological stations during 1961–2017. At the same time, the driving factors of climate change are discussed. Methods included linear regression, cumulative anomaly, the Mann-Kendall test, and Morlet wavelet analysis. The results indicated that during the study period, annual mean temperature and annual precipitation increased significantly at rates of 0.35℃/10 yr and 13.25 mm/10 yr, respectively, with abrupt changes occurring in 1994 and 1986. Annual mean temperature and annual precipitation in all four seasons showed increasing trends, with the maximum increases in winter of 0.42℃/10 yr and 3.95 mm/10 yr, respectively. The general climate in northern Xinjiang showed a trend towards increasingly warm and humid. In terms of spatial distribution, the temperature and precipitation in high mountainous areas increased the most, while basins areas increased only slightly. Periodic change analysis showed that annual mean temperature and annual precipitation experienced two climatic shifts from cold to warm and dry to wet, respectively. Population change, economic development and land use change are important factors affecting climate change, and more research should be done in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号