首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake. Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence. On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During glacial periods, the deep basin sediments of Lake Baikal are dominated by rapidly deposited clastics entering from large rivers with possibly glaciated headwaters. On the sublacustrine Academician Ridge (depth = 300 m), however, detailed analysis of the diatom biostratigraphy indicates that diastems (hiatuses of minor duration) and (or) highly variable rates of accumulation complicate paleolimnologic and paleoclimatic reconstructions from these records.  相似文献   

2.
Detailed depth profiles of photosynthetic pigments in a sediment core (G-12) collected at the BDP93 site, the Buguldeika saddle, of south Lake Baikal, along with depth profiles of total organic carbon (TOC) and biogenic silica, were studied to elucidate the temporal changes of phytoplankton assemblages in the lake during the past 28 kyr. In addition to the quantification of carotenoids by high-performance liquid chromatography with photodiode-array detection (HPLC-PDA), steryl chlorin esters (SCEs) were analyzed by HPLC-PDA, HPLC-mass spectrometry (LC-MS) and sterols in SCEs by gas chromatography–mass spectrometry (GC–MS) to enrich the taxonomical information on the phytoplankton composition. Allochthonous input of organic matter from the Selenga River resulted in the higher TOC contents in core G-12 than in a previously reported core (G-6) collected at another site from the southern basin. The poorer correlation in core G-12 than in G-6 between TOC and chlorophyll-a-originating pigments, which are indicative of autochthonous production, also indicated a significant allochthonous input at the site. The abundance of lutein among the carotenoids detected, and the good correlation of total chlorophyll a and b shows that green algae represented a significant portion of the phytoplankton, accompanying the diatoms at the G-12 site, after the last glacial period. The presence of cryptomonads and cyanobacteria were confirmed from marker carotenoids in the sediment core. GC–MS analysis of sterols in SCEs detected marker sterols of diatoms, green algae, chrysophytes and dinoflagellates. The depth profiles of the measured indicators gave consistent features for temporal changes in phytoplankton assemblage at the G-12 site of Lake Baikal after the last glacial maximum. Notably, the profile of a chrysophyte-specific sterol in SCEs was consistent with the reported distribution of chrysophyte cysts during the Holocene. The presence of phytoplankton, such as green algae, diatoms and chrysophytes, in Lake Baikal during the late last glacial period was indicated by the analysis of sterols in SCEs. Sedimentary carotenoids and sterols in SCEs were found to give complementary information about phytoplankton composition. These molecular indicators allow us to reconstruct past lake phytoplankton assemblages responding to environmental changes with a time resolution as high as age–depth relationship in sediments attainable at present.  相似文献   

3.
Existing techniques for measuring sediment Biogenic Silica (BSi) concentrations rely largely on conventional (Si-only) wet-alkaline digestion methods. Although results have provided detailed palaeoenvironmental information, potential errors can arise in accounting for sources of non-BSi. Here, I compare a conventional Si-only method to a Si/Al wet-alkaline digestion method, which in theory provides a more robust correction for concentrations of non-BSi. Late glacial/Holocene-aged sediment from Lake Baikal, Russia was used for the comparison. Results showed no significant difference between the two techniques, indicating that existing Si-only BSi methods are suitable for reconstructing environmental changes when levels of digested non-BSi are low to moderate.  相似文献   

4.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

5.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

6.
Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867–1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the less resistant diatoms. Also, BSi accumulation may be proportional to the amount of silica input from tributary sources. Therefore, BSi accumulation chronologies from sediment cores may be effective records of tributary inflow.  相似文献   

7.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   

8.
Diatom and geochemical data from Crawford Lake, Ontario, have been used to document limnological responses to periods of cultural disturbance resulting from native Iroquoian occupation of the watershed (1268–1486 AD) and Euro-Canadian agriculture and deforestation (1867 AD–present). Here, we further develop the high-resolution nature of the Crawford Lake sediment record to examine the physical, chemical and biological aspects of limnological response to human disturbances in the lake catchment area with exceptional detail. We report detailed diatom abundance and flux data for individual taxa from Crawford Lake, and further describe the relationship between assemblage composition and environmental conditions using canonical correspondence analysis (CCA). Diatom assemblage data are used to calculate diatom inferred-total phosphorus (DI-TP) concentrations for the past ∼1,000 years. We also examine the diatom community response during and after periods of disturbance by Iroquoian and Euro-Canadian populations, and compare this response to existing geochemical proxies of lake production and new elemental geochemical indicators of catchment area erosion. In particular, we explore the differing limnological response to the two distinct periods of cultural eutrophication and examine the limnological processes that occurred during the period of␣low (or no) human activity (1487–1866 AD), when geochemical indicators of lake production recovered to pre-disturbance conditions, but diatom assemblages notably did not. Our results illustrate the highly susceptible nature of diatom communities to periods of anthropogenic disturbance, and emphasize that ecological indicators (such as diatom assemblages) should be included with other proxies (such as nutrient concentrations and physical characteristics) when assessing disturbance and recovery in lake systems.  相似文献   

9.
The quality and interpretability of the paleobiological record depends on the preservation of morphological and geochemical fossils. Siliceous microfossils and sedimentary pigments are often cornerstones in paleoecology, although the microbial and geochemical processes conducive to their preservation remain poorly constrained. We examined sediments from an alpine lake in Banff National Park (Alberta, Canada) where diatom frustules are completely dissolved within 50 years of deposition. Diatom dissolution, silica recycling, and diagenetic alteration of algal pigments were investigated, in conjunction with porewater geochemistry and microelectrode profiling of the sediment–water interface. Analysis of sediment trap material showed ~90% of biogenic silica (BSi) production is lost prior to burial. Silica flux calculations, based on dissolved silica (as H4SiO4) in pore-waters, show a further ~6% of total BSi is returned to the water column from the upper 4 cm of sediments, implying that only ~4% of total BSi is permanently archived in sediments. In situ sediment pH and O2 profiles reveal that aerobic respiration by bacteria fully consumes oxygen by a depth of 4 mm into the sediment, with associated strong pH and redox gradients. During sedimentation and early diagenesis, diatoms undergo loss of extracellular polymeric substances that coat their frustules, promoting silica dissolution and leading to the loss of the microfossil record by a depth of 3.25 cm. Sedimentary pigments similarly undergo rapid degradation, but diatom-related carotenoids persist below the depth of silica dissolution. This work provides new insights on diagenetic processes in lakes, with broad implications for the interpretation of sedimentary proxies for algal production.  相似文献   

10.
Diatom species counts were conducted on 171 sediment samples from the 13-m-long core PG1351 from Lake El’gygytgyn, northeast Siberia. The planktonic Cyclotella ocellata-complex dominates the diatom assemblage through most of the core record, persisting through a variety of climate conditions. Periphytic diatoms, although less abundant, have greater diversity and greater down-core assemblage variation. During warm climate modes, longer summer ice-free conditions may have allowed more complex diatom communities to develop in shallow-water habitats, and enhanced circulation may have increased transport of these diatoms to deeper parts of the lake. Zones of low overall diatom abundance further support inferred intervals of low lake productivity during times of extended lake ice and snow cover. More data on the modern spatial and temporal distribution of diatom species in the Lake El’gygytgyn system will improve inferences from core records. This is the last in a series of eleven papers published in this␣special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

11.
The Nebraska Sand Hills are a distinctive eco-region in the semi-arid Great Plains of the western United States. The water table underlying the Sand Hills is part of the High Plains/Ogallala aquifer, an important water resource for the central Great Plains. Lake levels are affected directly by fluctuations in the water table, which is recharged primarily by local precipitation and responds quickly to climatically induced changes in regional water balance. Instrumental records are available for only 50–100 years, and paleolimnological data provide important insights into the extremes and variability in moisture balance over longer time scales. A set of 69 lakes from across Nebraska was used to establish a statistical relationship between diatom community composition and water depth. This relationship was then used to develop a diatom-based inference model for water depth using weighted averaging regression and calibration techniques. Development of the inference model was complicated by strong intra-seasonal variability in water depth and the linkages between depth and other limnologic characteristics, including alkalinity, water clarity and nutrient concentrations. Analysis of historical diatom communities from eight lakes allowed for the reconstruction of lake-level fluctuations over the past several thousand years. Comparisons of the more recent portion of these reconstructions with the instrumental Palmer Drought Severity Index (PDSI) showed that sediment records may not faithfully reflect short-term fluctuations in water level, except where sedimentation rates are very high. However, large and persistent changes in moisture availability were discernible even in longer, low-resolution records. Thus, diatoms are a useful addition to the tools available for understanding past drought in the central Great Plains, especially when trajectories of change are constrained by data from multiple sites or other proxies.  相似文献   

12.
Recent environmental change research in Lake Baikal is introduced together with an overview of several interrelated papers published concurrently in this issue of Journal of Paleolimnology. Five themes are tackled by analysis of recent Baikal sediment cores, dating, geochemistry, particulate pollutants, magnetism and diatoms. The concurrent papers focus on the first four themes in some detail and summary results of diatom analysis (from Mackay et al., 1998) are given here. Taken together these studies provide a time-space framework for recent environmental change in Lake Baikal not previously available.There are significant shifts in species composition of the endemic planktonic diatom assemblages in uppermost sediments collected from throughout the lake. However, these changes usually precede the sediment record of low level but widespread contamination by industrial products. The most clear sign of industrial contamination is the presence of particles from fossil fuel combustion in sediment post dating the 1930s.Although evidence for widespread biostratigraphic changes by pollution is lacking, radionuclide, diatom, lithostratigraphic and magnetic stratigraphies indicate two main features, (i) it is possible to make stratigraphic correlations within and between basins using recent sediment cores, (ii) that turbidite deposits, from several to tens of cm thick, are frequently encountered in recent sediments.Turbidite deposits occur in 210Pb dated and pre-210Pb sediment core sections and are undoubtedly a major macro-disturbance feature in many deep water locations in Lake Baikal. If profiles are to be used as direct proxy records of climate variability, then screening of cores for turbidites is a pre-requisite for quality assurance in future paleoenvironmental studies.On-going international research including Swiss, Russian and British joint paleoenvironmental studies on the distribution and biological formation of recent sediments will hopefully lead to better interpretation of Holocene and pre-Holocene sediment records in Lake Baikal.  相似文献   

13.
Examination of surficial sediments at 16 stations shows minor, but consistent differences in the numbers and kinds of siliceous microfossils deposited in different regions of Lake Baikal. There is a general north-south decreasing trend in total microfossil abundance on a weight basis. Endemic plankton diatom species are the most abundant component of assemblages at all stations. Chrysophyte cysts are present at all stations, but most forms are more abundant at northern stations. Non-endemic plankton diatom species are most abundant at southern stations. Small numbers of benthic diatoms and sponge spicules are found in all samples. Although low numbers are present in offshore sediments, the benthic diatom flora is very diverse. Principal components analysis confirms primary north-south abundance trends and suggests further differentiation by station location and depth.  相似文献   

14.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

15.
A 2.5-m-long sediment core was retrieved from Lake Somaslampi, a small lake located in a kame field on the north slope of the Scandes Mountains in Finnish Lapland. Holocene environmental changes were inferred from the lithological, geochemical, pollen, diatom and Cladocera records stored in the lake sediment. The chronology was based on six radiocarbon AMS dates supported by a palynological control chronology. The sediment profile consists of a glacial sedimentary sequence truncated by a lacustrine one. A hiatus, tentatively correlated with climate cooling and advances of glaciers during the 8.2 ka yrs BP “Finse cooling Event”, occurs between these sequences. The glacial sequence was composed of fluvioglacial clastics, smoothly changing into glacio-lacustrine diatomaceous ooze deposited in a meromictic proglacial lake that covered the kame field. The meromixis was probably caused by the greater depth of the lake, the extended ice-cover, and the microbial mats covering large areas of the lake bottom. A distinct change in the biota of the glacio-lacustrine sediments indicates higher trophic conditions than during deposition of the fluvioglacial clastics. The late-Pleistocene vegetation was characterised by subarctic birch tundra vegetation (BetulaSalix–Ericaceae) with low biodiversity gradually changing to BetulaPinus dominance in the early Holocene. The lake was deep and had a diatom inferred pH ~ 7 indicated also by the dominance of planktonic Cladocera. The base of the lacustrine sediment sequence (6,650–6,300 cal. BP) consisted of loess-rich sediment indicating an increase in eolian activity. This is also supported by the pollen record, which is dominated by more long-distant taxa such as Alnus and Pinus, and by the increased C/N ratio of the sediment. After the initial meromictic phase of the lake, an abrupt lowering of the water level occurred. Lake Somaslampi was isolated from the larger Pre-Lake Somas basin and became holomictic, shallow, much warmer and more productive, until the deterioration of climate around 3,000 yr BP and the increased input of clastics from the tundra soils. The vegetation followed the general climatic trend by gradually changing from the dominance of Betula and Pinus to the dominance of more tundra-related vegetation like Poaceae and Cyperaceae. However, the higher frequencies of planktonic Cladocera and centric diatoms in the most recent sediments indicates higher trophic conditions, increased turbulence and a prolonged ice-free period, which can possibly be linked to the recent climate warming especially in areas of higher altitude and latitude.  相似文献   

16.
During monthly investigations from 1996 to 2000, a hypolimnetic layer of phototrophic sulphur bacteria (Chromatium spp.) were observed in Lake Dudinghausen, a small dimictic lake in northern Germany. This paleolimnological study was initiated to detect if the occurrence of sulphur bacteria was related to cultural eutrophication or reflected natural conditions. Therefore, diatoms, algal pigments, okenone, geochemical proxies, and 210Pb and 137Cs were used in four sediment cores to investigate historical changes in trophic development, hypolimnetic redox conditions, anoxia and phototrophic sulphur bacteria abundances. Fossil diatoms, pigments, the ratio of chlorophyll derivatives to total carotenoids and the ratio of chlorophyll a to its derivatives suggest two phases of eutrophication coupled with hypolimnetic anoxia over the last ~80 years: a first phase from about 1923–1932 and a second from 1952 to 1982. In the first phase the ratios of Fe–Mn as well as Fe–Ca increased, suggesting seasonal anoxia. However, hypolimnetic anoxia was only weak because low levels of okenone suggest no mass development of sulphur bacteria. In contrast, sulphur bacteria increased during the early stages of the second eutrophication phase, suggesting increased temporal and spatial hypolimnetic anoxia. Surprisingly, the ratios of Fe–Mn as well as Fe–Ca decreased during this time. Possibly Fe, Mn and Ca were equally reduced through the intense anoxia. In the final stage, sulphur bacteria decreased again. As these bacteria need both anoxic conditions and a certain amount of light, the increased nutrient load probably led to low Secchi depth and therefore insufficient light conditions. In more recent years, diatoms and pigments suggest a decrease in nutrient levels. A second mass development of sulphur bacteria occurred, probably due to improved light conditions and continued anoxia in the upper hypolimnion. We conclude that the recent development of phototrophic sulphur bacteria do not represent natural conditions in Lake Dudinghausen. Furthermore, the upper sediments contain a completely new diatom flora that never occurred in older sediments of Lake Dudinghausen. Therefore, nutrient levels may eventually reach natural conditions, however they may not represent biological background reference conditions.  相似文献   

17.
The seasonal sedimentation pattern of diatom valves in Lake Holzmaar was investigated during 1995 by deploying sediment traps at three different lake depths. According to the sedimentation pattern, the major reproduction zone of diatoms was restricted to the upper 6 m of the water body. The population growth started late in April and blooms of Cyclotella cf. comensis Grun., which dominates the plankton diatoms, and Fragilaria crotonensis Kitton were collected in traps during June and September, and July, respectively. During summer, the seasonal sedimentation pattern of each taxon, as collected in the upper traps, was reflected in the concentrations in the lowest trap. However, in May and from September onwards, the community composition in the lowest trap and augmented trapping rates suggest both sediment focusing and resuspension of bottom sediments.The temperature signals as recorded by 18O values of diatom valves should, therefore, reflect integrated temperatures between 0 and 6 m depth. However, temperatures during summer and autumn are expected to be accentuated in the sedimentary record since the isotopic signal is weighted by both the number and the weight-mass of the valves. During summer, the transfer of these signals by the sedimenting diatoms retains the information pattern recorded, while in spring and autumn/winter additional influxes caused by resuspension may somewhat alter those temperature informations. The proxy signals finally stored in the sediments, may, therefore, not precisely represent the successive temperatures currently recorded during 1995 within mid-lake.  相似文献   

18.
The analysis of sediment chemistry and biota in drill cores from Lake Khubsugul in Mongolia (KDP-01) and Lake Baikal in Siberia (BDP-96/1), two great Eurasian freshwater lakes, detected prominent climate and biological events at 460–420 and 670 kyrs BP in addition to the orbital cycles of precession, tilt and eccentricity. The revealed long-term events were associated with notable changes in biodiversity and geography/landscapes, mainly in water budgets and weathering patterns. The span between 460–420 and 670 kyrs BP was the time when the climate and geographic conditions differed from those before and after these events. The corresponding 33–24 m (670–460 kyr) interval of the Khubsugul core lacked the usual signature of the Milankovitch glacial/interglacial cycles. Events of approximately these ages were found in some other continental ecosystems and in oceanic δ13C records. The two events may mark the phases of a 300–500-kyr long supercycle (or megastadial) in the evolution of continental ecosystems. Among other causes (e.g., regional tectonic events), this periodicity, being globally correlated, may be associated with the 400-kyr cycle of the Earth’s orbital eccentricity.  相似文献   

19.
Water chemistry and surface sediments were analyzed from 41 shallow lakes representing three previously-defined hydrological categories in the Slave River Delta, Northwest Territories, Canada, in order to identify relationships between hydrological and limnological conditions and their associations with recently deposited diatom assemblages. Evaporation-dominated lakes are physically removed from the influence of the Slave River, and are characterized by high alkalinity and high concentrations of nutrients and ions. In contrast, flood-dominated lakes tend to receive a pulse of floodwater from the Slave River during the spring thaw and have low alkalinity and low concentrations of most nutrients and ions. Exchange-dominated lakes are variably influenced by floodwaters from the Slave River and seiche events from Great Slave Lake throughout the spring thaw and open-water season, and are characterized by a broad array of limnological conditions that are largely dependent on the strength of the connection to these sources of floodwater. Specific diatom ‘indicator’ taxa have been identified that can discriminate these three hydrological lake categories. Evaporation-dominated lakes are associated with high relative abundance of common epiphytic diatom taxa, while diatoms indicative of flood- and exchange-dominated lakes span a wide range of habitat types (epiphytic, benthic) but also include unique planktonic diatoms (Stephanodiscus and Cyclostephanos taxa) that were not found in surface sediments of evaporation-dominated lakes. The planktonic diatom taxa originate from the Slave River, and thus are indicative of river influence. In complex, remote, freshwater ecosystems like the Slave River Delta, integration of results from hydrological and limnological approaches provides a necessary foundation to assess present, past and future hydroecological responses to changes in river discharge and climate.  相似文献   

20.
During the middle and late Holocene, the Iberian Peninsula underwent large climatic and hydrologic changes, but the temporal resolution and regional distribution of available palaeoenvironmental records is still insufficient for a comprehensive assessment of the regional variability. The high sedimentation rate in karstic, meromictic Montcortès Lake (Catalan pre-Pyrenees) allows for a detailed reconstruction of the regional palaeoecology over the last 5,340 years using diatom analysis, aquatic pollen, sedimentological data, and historic documentary records. Results show marked fluctuations in diatom species assemblage composition, mainly between dominant Cyclotella taxa and small Fragilariales. We suggest that the conspicuous alternation between Cyclotella comta and C. cyclopuncta reflects changes in trophic state, while the succession of centric and pennate species most likely reflects changes in the hydrology of the lake. The diatom assemblages were used to identify six main phases: (1) high productivity and likely lower lake levels before 2350 BC, (2) lower lake levels and a strong arid phase between 2350 and 1850 BC, (3) lake level increase between 1850 and 850 BC, (4) relatively high lake level with fluctuating conditions during the Iberian and Roman Epochs (650 BC–350 AD), (5) lower lake levels, unfavourable conditions for diatom preservation, eutrophication and erosion triggered by increased human activities in the watershed during the Medieval Climate Anomaly (900–1300 AD), and (6) relatively higher lake levels during the LIA (1380–1850 AD) and afterwards. The combined study of diatoms, algae and pollen provides a detailed reconstruction of past climate, which refines understanding of regional environmental variability and interactions between climate and socio-economic conditions in the Pyrenees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号