首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The composition and nature of high-Cr minerals in lithic clasts from the carbonatites of the Veseloe occurrence, northern Transbaikalia, were considered. In order to determine their source, the Cr-bearing phases were compared with chromite, magnetite, and rutile from ultrabasic rocks, mantle xenoliths, and eclogites. It was suggested that the xenoclasts studied were formed at great depths, whereas the carbonatites were directly derived from the mantle rather than formed by the crustal differentiation of a silicate-carbonate melt.  相似文献   

2.
3.
4.
This work reviews the character and origin of primary and supergene economic deposits of niobium associated with carbonatites. The Brazilian supergene deposits account for about 92% of the total worldwide production of Nb, with the primary St. Honoré carbonatite and other sources accounting for only for 7 and 1%, respectively. The emphasis of the review is upon the styles of Nb mineralization and the geological factors which lead to economic concentrations of Nb-bearing minerals. Primary economic deposits of Nb are associated principally with carbonatites found in diverse types of plutonic alkaline rock complexes. Primary magmas are principally those of the melilitite, nephelinite and aillikite clans. Although many primary niobium deposits are associated with carbonatites, ijolites and syenites in the same alkaline complexes can also contain significant Nb mineralization in the form of niobian titanite and diverse Nb–Zr-silicates (marianoite-wöhlerite); these potential sources of Nb have not as yet been explored or exploited. Primary Nb deposits can be regarded as large tonnage, low grade (typically < 1 wt.% Nb2O5) disseminated ore deposits. Niobium is hosted principally by diverse Na–Ca–U-pyrochlores, ferrocolumbite and fersmite. Every actual, and potential, primary Nb deposit is unique with respect to the varieties of pyrochlore present; extent of replacement by other minerals; and degree of alteration by deuteric/hydrothermal fluids. Within a given occurrence individual petrographically-defined units of carbonatite contain distinct suites of pyrochlore. Bulk rock analysis for Nb gives no indication of the style of mineralization and provides no information of use regarding beneficiation of the ore. Evaluation of any Nb deposit requires extensive definition drilling and detailed mineralogical studies. Primary Nb deposits result from the early crystallization of Nb-bearing minerals in magma chambers followed by crystal fractionation, magma mixing, and redistribution of Nb-minerals by density currents. Supergene Nb deposits occur in laterites formed by extensive weathering of primary carbonatites. The process results in the decomposition of apatite and magnetite, removal of soluble carbonates and physical concentration of resistant primary pyrochlore. Intense lateritization results initially in the replacement of primary pyrochlores by supergene, commonly Ba, Sr, K or Pb-bearing pyrochlores, and ultimately complete decomposition of pyrochlore and formation of Nb-bearing rutile, brookite, and anatase. The Nb contents of the laterites can be enriched up to 10 times or more above those of the primary carbonatite. Commonly, pyrochlores in laterites are fine grained and intimately intergrown with hematite, goethite and minerals of the crandallite group. The different styles of mineralization of primary and secondary Nb deposits require different methods of ore beneficiation.  相似文献   

5.
6.
7.
The key mineralogical features of the Newania carbonatites, that illustrate their derivation from primary mantle melts (Gruau et al. Terra Nova, Abstract Suppl 1:336, 1995; Viladkar Petrology 6(3):272–283, 1998; Basu and Murty Abstracts of Goldschmidt Conference A40, 2006), are the presence of magnesite, graphite and Cr-rich magnetite. Magnesite is an early crystallizing phase. Cr-rich magnetite and graphite coexist with carbonatite minerals and precipitated from carbonate magma. Graphite, as well as gaseous CO2 and carbonate minerals such as dolomite and magnesite, can be stable in peridotite mantle. Coexistence of these minerals is controlled by fO 2 and PT-conditions. Mineral geothermometers for the Newania carbonatite give temperatures from 463 to 950°C. The parental source for Newania carbonatites was characterized by a relatively high log (fHF/fH2O) level which increased during the crystallization history of Newania. The estimated oxygen fugacity (for ilmenite–magnetite pairs) varies from ?1.5 to +3.5 (log-bar unit deviation from FMQ buffer), which is supported by the presence of Fe-columbite, and the composition of phlogopite, amphibole and pyroxene that have an elevated concentration of Fe3+. However, the oxygen fugacity range represented by co-existing early-crystallized graphite and magnesite is below that of the FMQ buffer and lies on the CCO buffer.  相似文献   

8.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

9.
The present study introduces the carbonatite in the northern part of the Korean Peninsula for the first time.Recent exploration and development of the phosphorus-bearing carbonate rocks in the area have accumulated new geological data which gave us an opportunity to study origin of the carbonate rocks.We conducted geological survey,geochemical analyses of trace elements and rare earth elements,and carbon and oxygen isotope analyses for the carbonatites from Ssangryong,Pungnyon,Yongyu and Puhung districts of the northern part of the Korean Peninsula.This research confirms that the phosphorus-bearing carbonate rocks are carbonatite originating from the mantle.The studied carbonatites are distributed at the junctions of ring and linear structures or around their margins and contain a greater amount of REEs,Y,and Sr than carbonate rocks.The carbonatites in Yongyu and Puhung area show evidence that they were formed from mantle plume generated at the lower mantle and display similar fractionation characteristics to carbonatites in Barrado Itapirapua in Brazil and Kalkfeld and Ondurakorume in Namibia.REE patterns of the carbonatites are typical of carbonatites and the carbon and oxygen isotope analyses demonstrate that the carbonatites were originated from mantle.The carbonatites from the northern part of the Korean Peninsula have a great potential for sources of REE,Y,PGE(platinum group elements),copper,and gold.  相似文献   

10.
11.
12.
Stable isotope composition of syngenetic and epigenetic ice wedges, radiocarbon age, and pollen spectra of the surrounding deposits were studied during long term investigations at the "Belyi Klyuch" site on the first(6-8 m height) terrace of the Chara River(720 m.a.s.l.) in northern Transbaikalia to assess climatic conditions during ice-wedge formation. It was revealed that Holocene ice wedges had been formed from 10 to 7.5 ka 14 C BP. The isotope composition(δ~(18)O, δ~2 H) of relict ice wedges is the lightest and amounts-23‰ and-185‰, correspondingly. The isotopic compositions of ice lenses from sandy loam above ice wedges are-15.7‰, and-133‰; of small ice wedge in peat and sand are-15.3‰ and-117.9‰, accordingly.Interpretation of the ice wedge isotope composition has yielded that mean winter temperatures during cold stages of Holocene optimum were lower than today, during warm stages they were close to modern ones. During the coldest stages of Holocene optimum the total annual freezing index varied from-5100 to-5700 ℃ degree days, i.e. 300-600 ℃ degree days colder than during extremely severe modern winters. The total annual thawing index varied from 1300 to 1800 ℃ degree days, which was slightly higher than modern ones.  相似文献   

13.
14.
15.
The Gejiu tin field in southern China consists of six major deposits and many minor ones containing more than 120 million tons (pre-mining resource) at 1% Sn and significant amounts of Cu, Ag, Zn, and Pb. It is one of the largest tin fields of primary deposits in the world. Mineralization is the result of the intrusion of granitic plutons into Permian and Triassic sedimentary rocks, which are dominantly limestone, dolomitic limestone, and dolomite. Five (mostly peraluminous) granitic intrusives (64-115 Ma) are present in the area. The largest orebodies are spatially and temporally related to the Laoka (principally), Beipaotai, and Marsong granites. Tin mineralization is mainly within greisens developed at the outermost zone of a skarn zonal sequence and are mineralogically dominated by fluorite, quartz, and micas.

The deposits are the result of volatile-rich ore solutions that evolved late in the plutonic crystallization history. The solutions produced metamorphic skarns as well as ore skarns, both of which later became “greisenized” skarns. Gejiu is the largest example of what has been, up to now, a style of mineralization reported only in minor amounts.  相似文献   

16.
17.
Petrogenetic model for the origin of carbonatites   总被引:1,自引:0,他引:1  
The petrological significance and distribution of igneous carbonatites is discussed. Particular attention is paid to the relationship that exists between carbonatites and volcanism in East Africa. Using a simple model of a carbonatite-nephelinite-ijolite volcanic complex it was discovered that all the peralkaline and carbonatitic rocks found in such a complex could be derived from a single primary nephelinitic magma. The origin of such a primary magma, and the subsequent evolution carbonatitic sub-magmas, is examined.  相似文献   

18.
《Applied Geochemistry》1998,13(2):243-256
Recent surveys in the Neogene aeolianites of the Namib Sand Sea have led to the recovery of abundant and varied fossil eggshell fragments from diverse stratigraphic horizons: Aepyornithoid, Struthio and Diamantornis. The mineralogy, elemental composition, and organic matrices of these eggshells have been studied. Despite good preservation of the microstructural and mineralogical features of the fossil eggshells, the organic matrices have been altered in quantity and quality. The soluble and insoluble matrices of the eggshells show different behaviour during diagenetic processes.  相似文献   

19.
The paper reports Ar-Ar, Rb-Sr, and U-Pb (SHRIMP II) geochronologic data on carbonatites in Transbaikalia, related metasomatically altered rocks, and comagmatic silicate alkaline rocks. Metamorphic processes at two carbonatite occurrences were dated at 550–559 Ma (U-Pb and Rb-Sr methods). Geochronologic data make it possible to distinguish two major epochs when carbonatite were formed: Late Mesozoic in southwestern Transbaikalia and Late Riphean-Vendian in northern Transbaikalia. Small carbonatite occurrences are also known in the Vitim and Baikal alkaline provinces, which were formed in the Middle-Late Paleozoic. The Late Mesozoic carbonatite-forming epoch is definitely correlated with the development of the Western Transbaikalia rift structure and the Late Riphean-Vendian epoch, with the breakup of Laurasia in the Late Riphean.  相似文献   

20.
白云鄂博碳酸岩的方解石-白云石地质温度计   总被引:4,自引:2,他引:4  
利用方解石-白云石地质温度计对白云鄂博地区碳酸岩的平衡温度进行了测定。出露于东矿下盘的白云岩质火山岩和出露于尖山的方解石-白云石型火山岩获得了较高的温度,分别为681℃和648℃。这些样品中的方解石呈二十微米左右晶形较完整的小片,被稍大粒度的白云石颗粒包裹,未受交代作用影响,推测这种碳酸岩在快速冷却的情况下保存下了其岩浆侵位时的成分特点,从而指示出接近碳酸岩浆侵位时的温度。但本区多数碳酸岩的平衡温度在400~500℃之间,有下列三种情况:(1)具有自形-半自形中粗粒粒状变晶结构的碳酸岩最后的平衡温度为415~496℃;(2)产自东矿的其余样品(火山岩),所测最后平衡温度为431~485℃,在测温的微区范围内可见极细粒白云石方解石与稀土等矿物共生的现象;(3)为交代重结晶结构的碳酸岩明显受到后期热液流体的交代,在流体的作用下共生方解石和白云石在成分上达到新的平衡,平衡温度为432~507℃。本文所分析的样品多数结果(371~507℃)与用白云石(方解石)和磁铁矿氧同位素温度计对白云鄂博碳酸岩的计算结果(360~546℃)十分一致。虽然有研究者对方解石-白云石温度计用于火成碳酸岩表示过质疑,但本文资料表明火成碳酸岩最后的平衡温度是可以运用方解石-白云石温度计法来计算的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号