首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   

7.
8.
9.
10.
11.
12.
Summary. An asperity model is presented, including the effects of coupled elementary faults. This coupling is introduced by way of percolation theory. We postulate that the elementary faults have a typical size, whose dimensions are of order 0.3–0.4 km, and two kinds of characteristic earthquakes are obtained, one in the low magnitude range involving the rupture of a single elementary fault, and one in the high magnitude range involving a percolated cluster of faultlets, whose dimensions are proportional to the total fault. The magnitude–frequency relation of this model is constructed and the Gutenberg–Richter relation is obtained with a b value of 1 in the range of intermediate earthquakes. A relative enhancement in the probability of occurrence of large earthquakes is also observed. This effect is associated with 'characteristic earthquakes', whose magnitudes are related to the size of the active fault. Possible premonitors are discussed.  相似文献   

13.
14.
Summary. Most crustal earthquakes of the world are observed to occur within a seismogenic layer which extends from the Earth's surface to a depth of a few tens of kilometres at most. A model is proposed in which the shear zone along a transcurrent plate margin is represented as a viscoelastic medium with depth-dependent power-law rheology. A frictional resistance linearly increasing with depth is assumed on a vertical transcurrent fault within the shear zone. Such a model is able to reproduce a continuous transition from the brittle behaviour of the upper crust to the ductile behaviour at depth. Assuming that the shear zone is subjected to a constant strain rate from the opposite motions of the two adjacent plates, it is found that there exists a maximum depth H below which tectonic stress can never reach the frictional threshold: this may be identified as the maximum depth of earthquake nucleation. The value of H is consistent with observations for plausible values of the model parameters. The stress evolution in the shear zone is calculated in the linear approximation of the constitutive equation. A change in rigidity with depth, which is also introduced in the model, may reproduce the high vertical gradient of shear stress, which has been measured across the San Andreas fault, and the fact that most earthquakes are nucleated at some depth in the seismogenic layer. A crack which drops the ambient stress to the dynamic frictional level is then introduced in the model. To this aim, a crack solution is employed without a stress singularity at its edges, which is compatible with a frictional stress threshold criterion for fracture. A constraint on the vertical friction gradient is obtained if such cracks are assumed to be entirely confined within the seismogenic layer.  相似文献   

15.
16.
17.
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble.  相似文献   

18.
What can be learned from rotational motions excited by earthquakes?   总被引:1,自引:0,他引:1  
One answer to the question posed in the title is that we will have more accurate data for arrival times of SH waves, because the rotational component around the vertical axis is sensitive to SH waves although not to P-SV waves. Importantly, there is another answer related to seismic sources, which will be discussed in this paper.
Generally, not only dislocations commonly used in earthquake models but also other kind of defects could contribute to producing seismic waves. In particular, rotational strains at earthquake sources directly generate rotational components in seismic waves. Employing the geometrical theory of defects, we obtain a general expression for the rotational motion of seismic waves as a function of the parameters of source defects.
Using this expression, together with one for translational motion, we can estimate the rotational strain tensor and the spatial variation of slip velocity in the source area of earthquakes. These quantities will be large at the edges of a fault plane due to spatially rapid changes of slip on the fault and/or a formation of tensile fractures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号