首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 A method is described for evaluating the ‘partial derivatives’ of globally averaged top-of-atmosphere (TOA) radiation changes with respect to basic climate model physical parameters. This method is used to analyse feedbacks in the Australian Bureau of Meteorology Research Centre general circulation model. The parameters considered are surface temperature, water vapour, lapse rate and cloud cover. The climate forcing which produces the changes is a globally uniform sea surface temperature (SST) perturbation. The first and second order differentials of model parameters with respect to the forcing (i.e. SST changes) are estimated from quadratic least square fitting. Except for total cloud cover, variables are found to be strong functions of global SST. Strongly non-linear variations of lapse rate and high cloud amount and height appear to relate to the non-linear response in penetrative convection. Globally averaged TOA radiation differentials with respect to model parameters are also evaluated. With the exception of total cloud contributions, a high correlation is generally found to exist, on the global mean level, between TOA radiation and the respective parameter perturbations. The largest non-linear terms contributing to radiative changes are those due to lapse rate and high cloud. The contributions of linear and non-linear terms to the overall radiative response from a 4 K SST perturbation are assessed. Significant non-linear responses are found to be associated with lapse rate, water vapour and cloud changes. Although the exact magnitude of these responses is likely to be a function of the particular model as well as the imposed SST perturbation pattern, the present experiments flag these as processes which cannot properly be understood from linear theory in the evaluation of climate change sensitivity. Received: 16 January 1997/Accepted: 9 May 1997  相似文献   

2.
Abstract

We use eddy life‐cycle simulations to evaluate the response of atmospheric transient eddies to a global warming caused by CO2 doubling in the CCC general circulation model. In simulations using Northern Hemisphere winter conditions, transient waves attain larger kinetic energy and encompass a wider range of latitudes in the warmer climate. This behaviour contrasts with a previous investigation that used output from the NCAR and GFDL models. Our analysis indicates two primary factors for the difference between model responses: (1) a smaller change in the mid‐latitude temperature gradient in the CCC model, which allows (2) increased atmospheric water vapour in mid‐latitudes to catalyze a more rapidly evolving life‐cycle.  相似文献   

3.
Many scientific studies warn of a rapid global climate change during the next century. These changes are understood with much less certainty on a regional scale than on a global scale, but effects on ecosystems and society will occur at local and regional scales. Consequently, in order to study the true impacts of climate change, regional scenarios of future climate are needed. One of the most important sources of information for creating scenarios is the output from general circulation models (GCMs) of the climate system. However, current state-of-the-art GCMs are unable to simulate accurately even the current seasonal cycle of climate on a regional basis. Thus the simple technique of adding the difference between 2 × CO2 and 1 × CO2 GCM simulations to current climatic time series cannot produce scenarios with appropriate spatial and temporal details without corrections for model deficiencies. In this study a technique is developed to allow the information from GCM simulations to be used, while accommodating for the deficiencies. GCM output is combined with knowledge of the regional climate to produce scenarios of the equilibrium climate response to a doubling of the atmospheric CO2 concentration for three case study regions, China, Sub-Saharan Africa and Venezuela, for use in biological effects models. By combining the general climate change calculated with several GCMs with the observed patterns of interannual climate variability, reasonable scenarios of temperature and precipitation variations can be created. Generalizations of this procedure to other regions of the world are discussed.  相似文献   

4.
5.
 This study presents results from a downscaling simulation of the impact of a doubling of CO2 concentration. A multidecadal coupled simulation of a 1% per year increase of CO2 concentration with the Hadley Centre ocean-atmosphere model provides its sea-surface temperatures and deep soil climatological temperatures as a boundary condition to two 10-year integrations with a version of the ARPEGE-IFS atmosphere model. This global spectral model has a horizontal resolution varying between 60 km in the Mediterranean Sea and 700 km in the southern Pacific. The global impact as well as the regional impact over Europe in this time slice are examined and compared with results from other studies. Over Europe, our main focus, the model impact consists of a warming of about 2 °C, relatively uniform and with little seasonal dependence. There are precipitation increases of about 10% over the northern part in winter and spring, and 30% over the southern part in winter only. Precipitation decreases by 20% in the southern part in autumn. The day-to-day variability of the precipitation increases, except over the southern area in summer. No strong impact is found on the soil moisture. Budgets of physical fluxes are examined at the top of the atmosphere and at the land-atmosphere interface. Received: 26 February 1997/Accepted: 21 October 1997  相似文献   

6.
A downscaling method was developed to simulate the seasonal snow cover of the French Alps from general circulation model outputs under various scenarios. It consists of an analogue procedure, which associates a real meteorological situation to a model output. It is based on the comparison between simulated upper air fields and meteorological analyses from the European Centre for Medium-Range Weather Forecasts. The selection uses a nearest neighbour method at a daily time-step. In a second phase, the snow cover is simulated by the snow model CROCUS at several elevations and in the different regions of the French Alps by using data from the real meteorological situations. The method is tested with real data and applied to various ARPEGE/Climat simulations: the present climate and two climate change scenarios. Received: 26 September 1995 / Accepted: 7 August 1996  相似文献   

7.
The design and purposes of an intermediate model are discussed along with fundamentals of the model and results of numerical experiments. The main purposes of the model are reconstructions of the schemes of the ocean large-scale circulation and paleocirculation. For these problems numerical effectiveness is the key factor. A novel feature is the parameterization of the side wall Ekman boundary layers which was introduced to enable the use of geostrophy for calculating baroclinic velocity. This approach of connecting the side frictional layers with a non-viscous interior is not model-specific and can be used in any model employing geostrophy in the interior. The method can facilitate the no-flux and no-slip boundary conditions at the side walls in such models. Preliminary numerical experiments with simple basin geometry and idealized forcing aimed at a comparison with primitive equation and planetary geostrophic models are carried out. A direct comparison with the Geophysical Fluid Dynamics Laboratory (GFDL) primitive equation model was performed for a quantitative test of the proposed model. The results of the experiments are discussed in the context of the applicability of intermediate models for studying ocean climate dynamics.  相似文献   

8.
Abstract

A model with two active layers, a mixed layer and a pycnocline layer, over a semipassive deep ocean is described. The model is used to simulate a climatological seasonal cycle in the upper North Pacific. The formulation is similar to that in Cherniawsky et al. (1990). The model resolution is 1° latitude by 1.5° longitude, extending from 62°N to the equator. It is driven with monthly wind stress (Hellerman and Rosenstein, 1983) and with Newtonian heat and freshwater fluxes, which were inferred from climatological (Levitus, 1982) sea‐surface monthly temperatures and annual mean salinities. The monthly temperature anomalies (without the annual mean) are multiplied by a prescribed gain factor and advanced in time, compensating for time delay in the response of the mixed layer. No‐slip and no‐flux constraints are applied on north, east, west and land boundaries, while the following open boundary conditions are used at the equator: (a) free‐slip on zonal velocities in the two layers; (b) a prescribed meridional transport, due to local curl of the wind stress, in the mixed layer; (c) an antisymmetric meridional velocity plus a small flux‐balancing term in the second layer; and (d) across‐equator symmetry for layer depths, temperatures and salinities. Sensitivity to two aspects of parametrization is investigated: (1) the change to horizontal diffusion/viscosity coefficients that depend on the velocity deformation field (as in Smagorinsky, 1963), and (2) the use of idealized piecewise‐linear profiles for second‐layer temperatures and salinities for calculating mixed layer entrainment fluxes.  相似文献   

9.
The adjoint of a one-layer model of tropospheric-average temperature advection is used to examine a general circulation model (GCM) doubled CO2 scenario experiment locally over Europe. The adjoint technique enables a regional temperature anomaly to be accounted for in terms of horizontal advection and thermodynamic sources and sinks, both local and remote. Although the time-averaged regional signal in tropospheric-average temperature over Central Europe in the doubled CO2 GCM experiment is very small ( 0.1 K) once the Northern Hemispheric mean (+2.2 K) has been subtracted, there is a large variability on decadal time scales, and it is toward one such event that we direct our attention. It is found that a 10-January-mean regional anomaly (2×CO2-Control) of –1.7 K (with respect to hemispheric average) is primarily accounted for by changes in the advecting winds. The main thermodynamic forcing anomalies during January are situated over Europe itself and upstream over the Atlantic, but these are found to have a secondary direct effect, although their indirect effect via changes in the flow pattern remains to be determined.  相似文献   

10.
The atmospheric response to the evolution of the global sea surface temperatures from 1979 to 1992 is studied using the Max-Planck-Institut 19 level atmospheric general circulation model, ECHAM3 at T 42 resolution. Five separate 14-year integrations are performed and results are presented for each individual realization and for the ensemble-averaged response. The results are compared to a 30-year control integration using a climate monthly mean state of the sea surface temperatures and to analysis data. It is found that the ECHAM3 model, by and large, does reproduce the observed response pattern to El Nino and La Niña. During the El Nino events, the subtropical jet streams in both hemispheres are intensified and displaced equatorward, and there is a tendency towards weak upper easterlies over the equator. The Southern Oscillation is a very stable feature of the integrations and is accurately reproduced in all experiments. The inter-annual variability at middle- and high-latitudes, on the other hand, is strongly dominated by chaotic dynamics, and the tropical SST forcing only modulates the atmospheric circulation. The potential predictability of the model is investigated for six different regions. Signal to noise ratio is large in most parts of the tropical belt, of medium strength in the western hemisphere and generally small over the European area. The ENSO signal is most pronounced during the boreal spring. A particularly strong signal in the precipitation field in the extratropics during spring can be found over the southern United States. Western Canada is normally warmer during the warm ENSO phase, while northern Europe is warmer than normal during the ENSO cold phase. The reason is advection of warm air due to a more intense Pacific low than normal during the warm ENSO phase and a more intense Icelandic low than normal during the cold ENSO phase, respectively.  相似文献   

11.
Spectral nudging sensitivity experiments in a regional climate model   总被引:4,自引:0,他引:4  
In this study, the scale selective bias correction (SSBC) method described by Kanamitsu et al. (2010) is further examined by considering the full wind nudging and the vertically weighted damping coefficient. The 2001 June?CJuly?CAugust RSM simulation over a relatively large domain covering much of the Asian continent, the northern part of Australia, and the Indian and western Pacific oceans was the main focus. The full wind nudging shows wind fields closer to the driving global analysis. However, it leads to significantly distorted fields (e.g., temperature and geopotential height) aloft, accompanying excessive precipitation over the western Pacific. The gradual reduction of vorticity nudging from the model top to the ground surface improves rainfall patterns without a discernible distortion of large-scale fields. Further evaluation of a 10-year-summer simulation over East Asia confirmed that this revised SSBC method improves the monsoonal rainfall against the method of Kanamitsu et al. It is therefore concluded that vorticity nudging alleviates largescale errors by maintaining the near geostrophic balance between mass and winds. The reduction of this nudging factor in the lower troposphere allows the ageostrophic component of wind to develop as in nature, which leads to the improvement of precipitation.  相似文献   

12.
Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters.  相似文献   

13.
The global ocean circulation with a seasonal cycle has been simulated with a two-and-a-half layer upper-ocean model. This model was developed for the purpose of coupling to an atmospheric general circulation model for climate studies on decadal time scales. The horizontal resolution is 4° latitude by 5° longitude and is thus not eddy-resolving. Effects of bottom topography are neglected. In the vertical, the model resolves the oceanic mixed layer and the thermocline. A thermodynamic sea-ice model is coupled to the mixed layer. The model is forced at the surface with seasonally varying (a) observed wind stress, (b) heat fluxes, as defined by an atmospheric equilibrium temperature, and (c) Newtonian-type surface salt fluxes. The second layer is coupled to the underlying deep ocean through Newtonian-type diffusive heat and salt fluxes, convective overturning, and mass entrainment in the upwelling regions of the subpolar gyres. The overall global distributions of mixed layer temperature, salinity and thickness are favorably reproduced. Inherent limitations due to coarse horizontal resolution result in large mixed-layer temperature errors near continental boundaries and in weak current systems. Sea ice distributions agree well with observations except in the interiors of the Ross and Weddell Seas. A realistic time rate of change of heat storage is simulated. There is also realistic heat transport from low to high latitudes.  相似文献   

14.
A 1000 year integration of the CSIRO coupled ocean-atmosphere general circulation model is used to study low frequency (decadal to centennial) climate variability in precipitation and temperature. The model is shown to exhibit sizeable decadal variability for these fields, generally accounting for approximately 20 to 40% of the variability (greater than one year) in precipitation and up to 80% for temperature. An empirical orthogonal function (EOF) analysis is applied to the model output to show some of the major statistical modes of low frequency variability. The first EOF spatial pattern looks very much like that of the interannual ENSO pattern. It bears considerable resemblance to observational estimates and is centred in the Pacific extending into both hemispheres. It modulates both precipitation and temperature globally. The EOF has a time evolution that appears to be more than just red noise. Finally, the link between SST in the Pacific with Australian rainfall variability seen in observations is also evident in the model. Received: 29 August 1998 / Accepted: 31 July 1999  相似文献   

15.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   

16.
17.
Atmospheric CO2 removal is currently receiving serious consideration as a supplement or even alternative to emissions reduction. However the possible consequences of such a strategy for the climate system, and particularly for regional changes to the hydrological cycle, are not well understood. Two idealised general circulation model experiments are described, where CO2 concentrations are steadily increased, then decreased along the same path. Global mean precipitation continues to increase for several decades after CO2 begins to decrease. The mean tropical circulation shows associated changes due to the constraint on the global circulation imposed by precipitation and water vapour. The patterns of precipitation and circulation change also exhibit asymmetries with regard to changes in both CO2 and global mean temperature, but while the lag in global precipitation can be ascribed to different levels of CO2 at the same temperature state, the regional changes cannot. Instead, ocean memory and heat transfer are important here. In particular the equatorial East Pacific continues to warm relative to the West Pacific during CO2 ramp-down, producing an anomalously large equatorial Pacific sea surface temperature gradient and associated rainfall anomalies. The mechanism is likely to be a lag in response to atmospheric forcing between mixed-layer water in the east Pacific and the sub-thermocline water below, due to transport through the ocean circulation. The implication of this study is that a CO2 pathway of increasing then decreasing atmospheric CO2 concentrations may lead us to climate states during CO2 decrease that have not been experienced during the increase.  相似文献   

18.
An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called “Erik” simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39±0.11 K for a doubling of CO2.  相似文献   

19.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

20.
 We have analysed numerical simulations performed with a global 3D coupled atmosphere-ocean model to focus on the role of atmospheric processes leading to sea surface temperature (SST) drift in the tropics. Negative SST errors occur coherently in space and time with large positive errors in latent heat and momentum fluxes at the tropical air-sea interface, as diagnosed from forced SST simulations. The warm pool in the western Pacific disappears after a few years of simulation. Strong SST gradients enforce regions of high precipitation that are thin and stationary north of the equator. We detail the implications for the ocean-atmosphere system of such upheaval in the deep convection location. A sensitivity experiment to empirically formulate air-sea drag coefficient shows that the rapid warm pool erosion is not sensitive to changes in the formulation of the surface drag coefficient over the oceans because the corresponding changes in turbulent heat fluxes and LW cooling approximately cancel one another. In the eastern Pacific, the improvement in SST is striking and caused by feedbacks between SST, surface turbulent fluxes and boundary layer cloud fraction, which decreases as SST warms. Received: 8 December 1998 / Accepted: 6 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号