首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relations between the volume transport and the sea level difference across the Tsushima Straits have been investigated using current data provided by ADCP mounted on the ferry Camellia, plying between Hakata and Pusan. Empirical formulas to deduce the volume transports using the sea level differences across the eastern and western channels are proposed, considering the seasonal variation of the vertical current structure. The interannual variation of volume transport through the Tsushima Straits for 37 years from 1965 to 2001 is estimated using the empirical formulas. The total volume transport through the Tsushima Straits, averaged for 37 years, is 2.60 Sv and those of the eastern and western channels are 1.13 Sv and 1.47 Sv, respectively. The total volume transport through the Tsushima Straits tends to decrease with a roughly 15 year variation until 1992, then begins to increase.  相似文献   

2.
Downstream transition of the Tsushima Current west of Kyushu in summer   总被引:1,自引:0,他引:1  
In order to clarify detailed current structures west of Kyushu, ADCP measurements were carried out in July and September 1990 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows. On the basis of these results, together with data of routine oceanographic observations, we study the downstream transition of the Tsushima Current west of Kyushu in summer. In the southwest of the Goto Islands, a northward current identified as the Tsushima Current was clearly found. In the south of Cheju, a westward current bifurcated from the Tsushima Current. In the northwest of the Goto Islands, the Tsushima Current narrowed and its velocity became strengthened. Salinity of the Tsushima Current water was much diluted by a current from the Cheju Strait. Near the west coast of the Goto Islands, a countercurrent bifurcating from the Tsushima Current often occurred. The volume transport of the Tsushima Current was 2.3 Sv (1 Sv=106 m3s–1) on the northern side of latitude 31°N. The substantial bifurcation of the Tsushima Current toward the Eastern and Western Channels of the Tsushima Strait occurred in the vicinity of Tsushima. The volume transport through the Western Channel was two to three times larger than that through the Eastern Channel. The baroclinic component in volume transport of the Tsushima Current west of Kyushu was much smaller than that in the Japan Sea.  相似文献   

3.
By using Acoustic Doppler Current Profiler (ADCP) measurements with the four round-trips method to remove diurnal/semidiurnal tidal currents, the detailed current structure and volume transport of the Tsushima Warm Current (TWC) along the northwestern Japanese coast in the northeastern Japan Sea were examined in the period September–October 2000. The volume transport of the First Branch of the TWC (FBTWC) east of the Noto Peninsula was estimated as approximately 1.0 Sv (106 m3/s), and the FBTWC continued to flow along the Honshu Island to the south of the Oga Peninsula. To the north of the Oga Peninsula, the Second Branch of Tsushima Warm Current and the eastward current established by the subarctic front were recombined with the FBTWC and the total volume transport increased to 1.9 Sv. The water properties at each ADCP line strongly suggested that most of the upper portion of the TWC with high temperature and low salinity flowed out to the North Pacific as the Tsugaru Warm Current. In the north of the Tsugaru Strait, the volume transport of the northward current was observed to be as almost 1 Sv. However, the component of the TWC water was small (approximately 0.3 Sv).  相似文献   

4.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

5.
The Current Structure of the Tsushima Warm Current along the Japanese Coast   总被引:4,自引:0,他引:4  
The branching of the Tsushima Warm Current (TWC) along the Japanese coast is studied based upon intensive ADCP and CTD measurements conducted off the Wakasa Bay in every early summer of 1995–1998, the analysis of the temperature distribution at 100 m depth and the tracks of the surface drifters (Ishii and Michida, 1996; Lee et al., 1997). The first branch of TWC (FBTWC) exists throughout the year. It starts from the eastern channel of the Tsushima Straits, flows along the isobath shallower than 200 m along the Japanese coast and flows out through the Tsugaru Strait. The current flowing through the western channel of the Tsushima Straits feeds the second branch of TWC (SBTWC) which develops from spring to fall. The development of SBTWC propagates from the Tsushima Straits to Noto Peninsula at a speed of about 7 cm sec−1 following the continental shelf break with a strong baroclinicity. However, SBTWC cannot be always found around the shelf break because its path is influenced by the development of eddies. It is concluded that SBTWC is a topographically steered current; a current steered by the continental shelf break. Salient features at intermediate depth are the southwestward subsurface counter current (SWSCC) between 150 m and 300 m depths over the shelf region in 1995–1998 with the velocity exceeding about 5 cm sec−1, although discrepancies of the velocity and its location are observed between the ADCP data and the geostrophic currents. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We discussed the branching and joining of the Tsushima Current around the Oki Islands, based on ADCP and CTD measurements carried out in June 1990 by the quadrireciprocal method (Katoh, 1988). The volume transport of the northeastward current northwest of the Izumo Coast was about 2 Sv. The triple-branch structure of the Tsushima Current was obscure there. This northeastward current divided into the eastward and northward currents, with volume transports of 0.5 Sv and 1.5 Sv, respectively, at the west entrance of the Oki Strait. Most of the first branch of the Tsushima Current seemed to be separated again from the other confluent branches and to pass through the Oki Strait as this eastward current. The northward current was composed of the second and the third branches of the Tsushima Current. It detoured the Oki Islands, and almost all of it returned south to the Tajima Coast. In the vicinity of the Tajima Coast, the eastward current was abruptly strengthened through the confluence of the southward one which was originated from the northward current west of the Oki Islands. This showed that the first branch finally joined the compound of the second and the third branches detouring the Oki Islands. Between the Oki Strait and the Tajima Coast, the two-layer structure of currents was clearly found.  相似文献   

7.
The ADCP data obtained in the Tsushima Strait in the period from February 1987 to November 1990 on board twelve patrol vessels and one research vessel belonging to Maritime Safety Agency was analyzed. Total amount of the data is 200,053, but after quality check, we used 158,401 data for the analysis of the current field and its variability in the strait. The seasonal variation of the currents had been believed to be large. However, no direct current observation throughout the season had been made, and the knowledge on the seasonal variation was derived indirectly from the data of the sea level difference across the strait and of the density field given by hydrographic observations. ADCP data indicates that the seasonal variation of the current field is considerably small in all sub-regions. In the relatively strong current region to the west of the Tsushima Island, the northeast current component has maximum value in the early winter season.  相似文献   

8.
We discussed the detailed current structures in the Eastern Channel of the Tsushima Strait, using four sets of acoustic Doppler current profiler (ADCP) data, which were taken by the quadrireciprocal method (Katoh, 1988), for removing tidal currents, in summers of 1987–1989. In the Eastern Channel, diurnally averaged currents balanced almost geostrophically. In the upper layer of the deepest part of the Eastern Channel, there existed a current core which corresponded to one branch of the Tsushima Current. The current direction in this core was between NE and ENE in all observations but the magnitude of velocity in 1987 differed largely from that in 1988. Another current core with lower velocities was found near the north coast of Kyushu. Near the bottom at the deepest part of the Eastern Channel, the velocity was more or less 0.3 kt (15 cm s–1). Along the east coast of Tsushima and in waters northeast of it, countercurrents were observed. The continuity of these countercurrents was interpreted as follows: A part of the current flowing from the Western Channel of the Tsushima Strait into the Japan Sea turns clockwise in waters northeast of Tsushima, and flows southwestward along the east coast of Tsushima. The southwestward current along Tsushima was correlated with the northeastward current in the central part of the Eastern Channel. The transport through the Eastern Channel was between 0.59 and 1.30 Sv (1 Sv=106 m3s–1). The baroclinic component, which was defined as the transport based on calculations of geostrophic current with assuming zero velocity near the bottom, was very small.  相似文献   

9.
Northern and southern latitudinal transects were conducted west of Tsugaru Strait to estimate the volume transport in this area. It was found that the Tsushima Warm Current is the northward volume transport across the southern transect and the Northward Current is the northward volume transport across the northern transect. The current in Tsugaru Strait,viz. the Tsugaru Warm Current, is the flow remaining when the Northward Current is subtracted from the Tsushima Warm Current. Both CTD transects covered from near-shore to west of the subarctic front, and observed depths were from the surface to the bottom or to 1000-1500 m depth. Our estimations indicate that large interannual variations of volume transport occur, relative to the seasonal ones, with interannual variations sometimes exceeding seasonal variations in the Tsushima Warm Current and the Northward Current. The Tsugaru Warm Current has near-steady transport. Fluctuations in the Tsushima Warm Current are thus transmitted to the Northward Current. Further, our results revealed seasonal variations in the flow: the baloclinic structure became deeper in April and the current axis tended to shift in a near-shore direction in October. Therefore, previous studies, which had shallow reference levels and lacked nearshore stations, may have underestimated the transport and excessive seasonal variations.  相似文献   

10.
The vertical structure of the Soya Warm Current (SWC) was observed by a bottom-mounted acoustic Doppler current profiler (ADCP) in the region of the SWC axis near the Soya Strait during a 1-year period from May 2004. The ADCP data revealed a marked seasonal variability in the vertical structure, with positive (negative) vertical shear in summer and fall (winter and spring). The volume transport of the SWC is estimated on the basis of both the vertical structure observed by the ADCP and horizontal structure observed by the ocean radars near the strait. The transport estimates have a minimum in winter and a maximum in fall, with the yearly-averaged values in the range of 0.94–1.04 Sv (1 Sv = 106 m3 s−1). These lie within a reasonable range in comparison to those through other straits in the Japan Sea.  相似文献   

11.
Hydrographic conditions in the Tsushima Strait revisited   总被引:1,自引:1,他引:0  
Long-term averaged temperature and salinity distributions in the Tsushima Strait are investigated on the basis of a concurrent dataset of the eastern and western channels during 1971–2000. Both temperature and salinity show a clear seasonal variation with weak and strong stratifications in December–April and June–October, respectively. The largest standard deviations occur in summer around the thermocline for temperature and in the surface layer for salinity. This indicates large interannual variability in the development of a thermocline and low salinity water advection from the East China Sea. The water masses in both channels are distinctly different from each other; the water in the western channel is generally colder and fresher than that in the eastern channel throughout the year. Baroclinic transport based on the density distributions shows a seasonal variation with a single peak in August for the eastern channel and double peaks in April and August for the western channel. However, this cannot explain the seasonal variation in the total volume transport estimated from the sea level differences across the channels. The spatial distribution of baroclinic transport shows a year-round negative transport towards the East China Sea behind the Iki Island in the eastern part of the eastern channel. This negative transport reflects the baroclinic structure between the offshore Tsushima Current Water and cold coastal water. The corresponding southwestward currents are found in both Acoustic Doppler Current Profiler (ADCP) and high frequency (HF) radars observations.  相似文献   

12.
Five research cruises were undertaken incorporating ADCP sections along the Cretan Arc Straits and CTD surveys covering the entire area of the Straits and the Cretan Sea. In addition, six moorings (with 15 current meters) were deployed within the Straits, which monitored flows in the surface (50 m), intermediate (250 m), and deep (50 m from the bottom) layers. The ADCP, CM, and CTD datasets enable the derivation of water transports through the Cretan Arc Straits to be assessed. Flow structure through the Cretan Arc Straits is not the typical flow regime with a surface inflow and deep outflow, instead there is a persistent deep outflow of Cretan Deep Water (CDW) (σθ>29.2) with an annual mean of ˜0.6 Sv, through the Antikithira and Kassos Straits at depths below 400 m and 500 m, respectively. CDW outflowing transports are higher (˜0.8 Sv) in April–June, and lower (˜0.3 Sv) in October–December. Within the upper water layer (0–˜400 m), the transport and the water exchanges through the Straits are controlled by local circulation features, which weaken substantially below 200 m. The Asia Minor Current (AMC) influences the Rhodes and the Karpathos Straits, resulting in a net inflow of water. In contrast, the Mirtoan/West Cretan Cyclone influences the Antikithira and Kithira Straits, where there is a net outflow. In the Kassos Strait, there is a complex interaction between the East Cretan Cyclone, the Ierapetra Anticyclone and the westward extension of the Rhodes Gyre, which results in a variable flow regime. There is a net inflow in autumn and early winter, and a switch to a net outflow in early spring and summer. The total inflow and outflow, throughout all of the Straits, ranged from ˜2 to ˜3.5 Sv, with higher values in autumn and early winter and lower in summer. The AMC carries ˜2 Sv of inflow through the Rhodes and Karpathos Straits, and this accounts for 60–80% of the total inflow. About 10–15% of the total outflow is of CDW, and a further 45–70% occurs through the upper 400 m of the Kithira and Antikithira Straits. The Kassos Strait exhibits a net inflow of ˜0.7 Sv in autumn and early winter, with a net outflow of ˜0.5 Sv in early spring and summer.  相似文献   

13.
Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves are summarized. Observations using acoustic Doppler current profilers (ADCPs) suggest that the connectivity of mean-volume-transports is incomplete between the Tsushima (2.6 Sverdrups; 1 Sv = 106 m3/s) and Taiwan Straits (1.2 Sv). The remaining 1.4-Sv transport must be supplied by onshore Kuroshio intrusion across the East China Sea shelf break. The Yellow Sea Warm Current is not a persistent ocean current, but an episodic event forced by northerly winter monsoon winds. Nevertheless, the Cheju Warm Current is detected clearly regardless of season. In addition, the throughflow in the Taiwan Strait may be episodic in winter when northeasterly winds prevail. The throughflow strengthens (vanishes) under moderate (severe) northeasterly wind conditions. Using all published ADCP-derived estimates, the throughflow transport (V) in the Taiwan Strait is approximated as
where V 0, V 1, K are 1.2 Sv, 1.3 Sv, and 157 days, respectively, t is yearday, and T is 365.2422 days (i.e., 1 year). The difference between the throughflow transports in the Tsushima and Taiwan Straits suggests that the onshore Kuroshio intrusion across the shelf break increases from autumn to winter. The China Coastal Current has been observed in winter, but shelf currents are obscure in summer.  相似文献   

14.
The branches of the Tsushima Warm Current (TWC) are realistically reproduced using a three-dimensional ocean general circulation model (OGCM). Simulated structures of the First Branch and the Second Branch of the TWC (FBTWC and SBTWC) in the eastern Japan Sea are mainly addressed in this study, being compared with measurement in the period September–October 2000. This is the first numerical experiment so far in which the OGCM is laterally exerted by real volume transports measured by acoustic Doppler current profiler (ADCP) through the Tsushima Straits and the Tsugaru Strait. In addition, sea level variation measured by tide-stations along the Japanese coast as well as satellite altimeters is assimilated into the OGCM through a sequential data assimilation method. It is demonstrated that the assimilation of sea level variation at the coastal tide-stations is useful in reproducing oceanic conditions in the nearshore region. We also examine the seasonal variation of the branches of the TWC in the eastern Japan Sea in 2000. It is suggested as a consequence that the FBTWC is continuous along northwestern Honshu Island in summertime, while it degenerates along the coast between the Sado Strait and the Oga Peninsula in other seasons. On the other hand, a mainstream of the SBTWC exists with meanders and eddies in the offshore region deeper than 1000 m to the north of the Sado Island throughout the year.  相似文献   

15.
We conducted hydrographic observations ten times in the Tsushima Strait to reveal seasonal variations of horizontal material transports such as of heat, freshwater, chlorophyll a, and dissolved inorganic nitrogen (DIN) and phosphorus (DIP) through the eastern channel of the Tsushima Strait (ECTS). The volume, freshwater, and heat transport results are of nearly the same order as results reported in previous studies. The annual mean DIN and DIP transports of 3.59 kmol/s and 0.29 kmol/s are large relative to those of the Changjiang and the Taiwan Strait and are horizontally transported through the ECTS. Nutrient transports are high in July–August and October and low in April and November. Increased nutrient transports in July–August and October are due to the appearance of a cold saline water mass in the bottom layer of the ECTS. Changes in DIN transports in summer and autumn, which account for two-thirds of the total annual DIN transport, would have a large effect on the nitrogen budget and biological productivity in the Tsushima Warm Current region.  相似文献   

16.
The temporal characteristics and spatial structures of high frequency variability of the current in the western channel of the Tsushima/Korea Straits (TKS) are studied using ADCP data from 10?years along the cruise line of a regular ferry, “Camilla”, between Busan and Hakata. The eddy kinetic energy analysis shows that the high frequency variability has strong seasonal and spatial dependencies. From December to April, the variability is prominent in the entire western channel of the TKS. From July to October, it is enhanced only in the Korean coastal zone. The EOF analysis for the component of the high frequency currents normal to the ferry route illuminates three types of dominant modes, a transport mode and a vortex mode in the western channel during December–April, and a baroclinic coastal-trapped mode in the Korean coastal zone during July–October. The transport mode with a uniform current direction throughout the channel shows good correlation with the high frequency variability of the volume transport through the western channel with dominant time scales of 3.5 and 7?days. The vortex mode with alternating current directions across the channel explains well the variability of the eddy vorticity in the western channel with dominant time scales of 5–8?days. The baroclinic coastal-trapped mode in the Korean coastal zone has characteristics of both baroclinic Kelvin wave and topographic Rossby wave in the vertical current structure with dominant time scales of 14 and 32?days.  相似文献   

17.
The horizontal structure of deep mean circulation and its seasonal variability in the Japan/East Sea (JES) were studied using profiling float and moored current meter data. The deep circulation in the Japan Basin (JB) flows cyclonically, basically following f/H contours. The correlation between the directions of deep current and f/H contour increases as |▿(f/H)| increases, reaching remarkably high correlation coefficient (>0.8) values in steep slope regions in the JB. In contrast to the JB, the deep mean circulation in the Ulleung/Tsushima Basin (UTB) is generally weak and cyclonic accompanied by sub-basin-scale cyclonic and anticyclonic eddies. The UTB shows a poorer correlation between directions of deep current and f/H contours than other basins. The time-space averaged deep mean current is about 2.8 cm/s and the volume transport in the deep layer (800 m to bottom) in the JB reaches about 10 Sv (10 × 106 m3s−1), which is about four times greater than the inflow transport through the Tsushima Straits. A salient feature is that the amplitude of deep mean current in the JB reveals a remarkable seasonal variation with a maximum in March and minimum in October. The annual range of the seasonal variation is about 30% of the mean velocity, whereas that in the southern JES (UTB and Yamato Basin) is weak.  相似文献   

18.
The seasonal variation in the barotropic mode of motion caused by joint effect of the baroclinicity and bottom relief (Jebar effect) in the Tsushima Strait is investigated with the use of the diagnostic numerical model in this study. The Jebar effect in the Tsushima Strait is mainly caused by the intrusion of the Bottom Cold Water along the Korean coast in summer. This Jebar effect along the Korean coast locally supplies the negative vorticity in situ, and it forces the coastal current to be intensified. In summer, the volume transport of the Tsushima Warm Current entering the Tsushima Strait is biassed to the western part of the strait comparing with the flow pattern calculated in winter.  相似文献   

19.
Tidal currents in the Tsushima Straits have been analyzed using measurements obtained since February 1997 by an acoustic Doppler current profiler (ADCP) mounted on the ferryboat Camellia. Tidal current constituents (M 2, S 2, K 1, O 1) are dominant among the ten tidal current constituents (Q 1, O 1, P 1, K 1, N 2, M 2, S 2, K 2, MSf, Mf), and generally 1.4–2.1 times stronger at the western channel of the straits than those at the eastern channel. The ratio between amplitude of M 2, S 2, K 1 and O 1 averaged along the ferryboat track is 1:0.45:0.59:0.51. The major axis directions of tidal current ellipses are generally SW to NE, exceptionally in the vicinity of the Tsushima Islands. Approaching the Tsushima Islands from the Korean Peninsula side, the major axis gradually rotates clockwise. At the western channel, the M 2 and K 1 constituents change the rotation direction of current vectors from clockwise to counterclockwise at about 90–130 m depth. The contributions of the tidal currents to the mean kinetic energy and the mean eddy kinetic energy along the ferryboat track are, on average, 0.56 and 0.71, respectively. This suggests that tidal current activities are generally more dominant than the mean current activities and much more dominant than eddy activities. The only region where the eddy activities are comparable to the tidal current activities is located on the east side of the Tsushima Islands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Recent investigation suggests that volume transport through the Tsushima/Korea Strait often has double peaks during the summer to autumn period with decreasing transport in September. The satellite-observed wind changes from weak northwestward (across-strait) in summer to strong southwestward (along-strait) in early autumn (September) in the strait. Such a strong along-strait wind is related to tropical cyclones, which frequently pass through the East China Sea in September. The effect of the along-strait wind component on the transport variation is examined using a three-dimensional numerical model. The simulated volume transport through the Tsushima/Korea Strait shows realistic seasonal and intra-seasonal variations. According to sensitivity experiments on local winds, the transport variations in September are mainly generated by strong along-strait (southwestward) wind rather than weak across-strait wind. The strait transport responds to the along-strait wind (southeastward), which produces a sea level increase along the Korean coast, resulting in the geostrophic balance across the strait. The transport minimum through the Tsushima/Korea Strait in September can be determined by the combination of the across-strait geostrophic and along-strait ageostrophic balances. The Editor-in-Chief does not recommend the usage of the term “Japan/East Sea” in place of “Sea of Japan”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号