首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct bed shear stress measurements in bore-driven swash   总被引:1,自引:0,他引:1  
Direct measurements of bed shear in the swash zone are presented. The data were obtained using a shear plate in medium and large-scale laboratory bore-driven swash and cover a wide range of bed roughness. Data were obtained across the full width of the swash zone and are contrasted with data from the inner surf zone. Estimates of the flow velocities through the full swash cycle were obtained through numerical modelling and calibrated against measured velocity data. The measured stresses and calculated flow velocities were subsequently used to back-calculate instantaneous local skin friction coefficients using the quadratic drag law. The data show rapid temporal variation of the bed shear stress through the leading edge of the uprush, which is typically two–four times greater than the backwash shear stresses at corresponding flow velocity. The measurements indicate strong temporal variation in the skin friction coefficient, particularly in the backwash. The general behaviour of the skin friction coefficient with Reynolds number is consistent with classical theory for certain stages of the swash cycle. A spatial variation in skin friction coefficient is also identified, which is greatest across the surf-swash boundary and likely related to variations in local turbulent intensities. Skin friction coefficients during the uprush are approximately twice those in the backwash at corresponding Reynolds number and cross-shore location. It is suggested that this is a result of the no-slip condition at the tip leading to a continually developing leading edge and boundary layer, into which high velocity fluid and momentum are constantly injected from the flow behind and above the tip region. Finally, the measured stress data are used to determine the asymmetry and cross-shore variation in potential sediment transport predicted by three forms of sediment transport formulae.  相似文献   

2.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

3.
New laboratory experiments have produced detailed measurements of hydrodynamics within swash generated by bore collapse on a steep beach. The experiments are based on a dambreak rig producing a highly repeatable, large-scale swash event, enabling detailed measurements of depths and velocities at a number of locations across the swash zone. Experiments were conducted on two beaches, differentiated by roughness. Results are presented for uprush shoreline motion, flow depths, depth-averaged velocity, velocity profiles and turbulence intensity. Estimates of the time- and spatially-varying bed shear stress are obtained via log-law fitting to the velocity profiles and are compared with the shear plate measurements of Barnes et al. (2009) for similar experimental conditions. Experimental results are compared with model predictions based on a NLSWE model with momentum loss parameterised using the simple quadratic stress law in terms of the depth-averaged velocity. Predicted and measured flow depths and depth-averaged velocities agree reasonably well for much of the swash period, but agreement is not good at the time of bore arrival and towards the end of the backwash. The parameterisation of total momentum loss via the quadratic stress law cannot adequately model the swash bed shear stress at these critical times.  相似文献   

4.
《Coastal Engineering》2006,53(4):335-347
This paper investigates cross-shore profile changes of gravel beaches, with particular regard to discussing the tendency for onshore transport and profile steepening in the swash zone. The discussion includes observed morphological changes on a gravel beach from experimental investigations at the Large Wave Flume (GWK) in Hanover, Germany. During the tests all the profile changes occurred in the swash zone, resulting in erosion below the still water line (SWL) and formation of a berm above the SWL. We investigate the profile evolution evaluating the transport rates from a bed load sediment transport formulation coupled with velocities calculated from a set of Boussinesq equations that have been validated for its use in the surf and swash zones [Lynett, P.J., Wu, T.-R., and Liu, L.-F., P., 2002. Modelling wave runup with depth-integrated equations. Coastal Engineering, 46, 89–107; Otta, A.K., and Pedrozo-Acuña, A., 2004. Swash boundary and cross-shore variation of horizontal velocity on a slope. In: J.M. Smith (Editor), Proceedings 29th International Conference on Coastal Engineering. World Scientific, Lisbon, Portugal, pp. 1616–1628]. We discuss the influence of bottom friction on the predicted profiles, using reported friction factors from experimental studies. It is shown that the use of a different friction factor within a realistic range in each phase of the swash (uprush and backwash) improves prediction of the beach profiles, although quantitative agreement between the measured and computed profile evolutions is not satisfactory. Furthermore, if the friction factor and the transport efficiency (C) of the sediment transport formulation are kept the same in the uprush and backwash, accurate representation of profile evolution is not possible. Indeed, the features of the predicted profiles are reversed. However, when the C parameter is set larger during the uprush than during the backwash, the predicted profiles are closer to the observations. Differences between the predicted profiles from setting non-identical C-values and friction factors for the swash phase, are believed to be linked to both the infiltration effects on the flow above the beachface and the more accelerated flow in the uprush.  相似文献   

5.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

6.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

7.
《Coastal Engineering》2001,42(1):35-52
Measurements were obtained from the swash-zone of a high-energy macrotidal dissipative beach of pore-pressure at four levels below the bed, and cross-shore velocity at a single height above the bed. Time-series from relatively high (Hs≈2.0 m) energy conditions were chosen for analysis from the mid-swash-zone at high tide. Calculation of upwards-directed pore-pressure gradients shows that, in this case, fluidisation of the upper layer of sediment, leading to enhanced backwash transport, is unlikely. An apparent conflict exists in the literature regarding the net effect of infiltration–exfiltration on the sediment transport, through the combined effects of stabilisation–destabilisation and boundary layer modification. This is examined for the data collected using a modified Shields parameter. Inferred instantaneous transport rates integrated over a single swash cycle show a decrease in uprush transport of 10.5% and an increase in backwash transport of 4.5%. Sensitivity tests suggest that there is a critical grain size at which the influence of infiltration–exfiltration changes from offshore to onshore. The exact value of this grain size is highly sensitive to the method used to estimate the friction factor.  相似文献   

8.
The flow structure of a swash event over a uniform slope is studied using a RANS-VOF numerical model coupled with a v2f turbulence closure. The model is compared with experimental data of recent laboratory experiments. The ability of the turbulence modelling for simulating swash flow and the evolution of the computed bed shear stress during run-up and run-down are investigated. The agreement between numerical results and measured data, such as water depth, depth-averaged velocity and bed shear stress is very good during run-up. Main discrepancies are found during run-down. The paper also examines the aeration of the water layer in the swash flow, taking advantage of the PLIC method for computing the air–water interfaces. Air is continuously entrapped in the swash front and released at its rear during run-up. A detailed analysis indicates that the flow reversal is initiated near the bottom at the outer boundary of the swash zone and progresses landward. The study highlights the asymmetry between run-up and run-down. During run-up, the swash front propagation determines the turbulence properties and the bed shear stress profile on the beach, whereas the flow properties are more homogeneously distributed in the swash area during run-down.  相似文献   

9.
Measurement and modeling of bed shear stress under solitary waves   总被引:1,自引:0,他引:1  
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 104 < Re < ~ 105). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress and Froude–Krylov force) varied between 0.386 Pa and 2.06 Pa. The total stress is important in determining the stability of submarine sediment and in sheet flow regimes. Analytical modeling was carried out to predict total and skin shear stresses using convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total shear stress, maximum skin shear stress and at the time of maximum velocity) using both the maximum velocity and the instantaneous velocity at that phase of the wave cycle. Similarly, force coefficients obtained from total stress were estimated at time of maximum positive and negative total stress and at maximum velocity. Maximum positive total shear stress was approximately 1.5 times larger than minimum negative total stress. Modeled and measured positive bed shear stresses are well correlated using the best convolution model, but the model underestimates the data by about 4%. Friction factors are dependent on the choice of normalizing using the maximum velocity, as is conventional, or the instantaneous velocity. These differ because the stress is not in phase with the velocity in general. Friction factors are consistent with previous data for monochromatic waves, and vary inversely with the square-root of the Reynolds number. The total shear stress leads the free stream fluid velocity by approximately 50°, whereas the skin friction shear stress leads by about 30°, which is similar to that reported by earlier researchers.  相似文献   

10.
《Marine Geology》2004,203(1-2):109-118
Spatial variations in sediment load in the swash uprush and textural properties of sediment in transport were evaluated to investigate the mechanisms responsible for sediment transport during wave uprush. Four streamer traps were deployed at 2.0-m intervals across the swash zone of a sheltered, microtidal sandy beach at Port Beach, Western Australia, over a 4-day period. During these trapping experiments, offshore significant wave heights were 0.3–0.5 m and wave periods were about 10 s. The average width of the uprush zone was 6.9 m and the average uprush duration was 5.9 s. Cross-shore distributions of sediment load for 70 uprush events reveal a maximum in sediment load landward of the base of the swash (at about 20% of swash width) during single events and a maximum closer to mid-swash (at about 40% of swash width) during multiple events characterized by swash interactions. Settling velocity distributions of trap samples during individual uprush events are similar to distributions found on the beach surface, with the lowest settling velocities (finest sediments) near the base of the swash zone and maximum settling velocities (coarsest sediments) around the mid-swash position. It was found that sediment transport during wave uprush occurs through two distinct mechanisms: (1) sediment entrainment during bore collapse seaward of the base of the swash zone and subsequent advection of this bore-entrained sediment up the beach by wave uprush; and (2) in situ sediment entrainment and transport induced by local shear stresses during wave uprush. Both mechanisms are considered important, but the first mechanism is considered most significant during the early stages of wave uprush when sediment is transported mainly in suspension, while the second mechanism is likely to dominate the mid- to later stages of wave uprush when sediment is transported mainly by sheet flow. The relative importance of the two mechanisms will vary between different beaches with the morphodynamic state of the beach (reflective versus dissipative) expected to play a major role.  相似文献   

11.
《Coastal Engineering》2005,52(1):1-23
We develop solutions for the transport of suspended sediment by a single swash event following the collapse of a bore on a plane beach, and we investigate the morphodynamical role that such transport may play. Although the intrinsic asymmetry between uprush and backwash velocities tends to encourage the export of sediment, we find that swash events may be effective in distributing across the swash zone much or all of the sediment mobilised by bore collapse; additionally, settling lag effects may promote a weak onshore movement of sediment. We quantify both effects in terms of the properties of the sediment and of the swash event, and comment on the relationship between our findings and recent field studies of swash zone sediment transport.  相似文献   

12.
A simple conceptual formulation to compute seabed shear stress due to asymmetric and skewed waves is presented. This formulation generalizes the sinusoidal wave case and uses a variable friction factor to describe the physics of the boundary layer and to parameterize the effects of wave shape. Predictions of bed shear stresses agree with numerical computations using a standard boundary layer model with a kε turbulence closure. The bed shear stress formulation is combined with a Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree with oscillatory water tunnel measurements from the literature.  相似文献   

13.
Abstract

On shingle beaches, changes in foreshore elevation and sediment distribution landward of the break point are produced largely by variations in the uprush and backwash of waves. However, very little is known about the forces active in this zone.

A field instrument system which senses and records some of the parameters thought to influence beach erosion and deposition in this zone has been constructed. The equipment is also suitable for the investigation of a number of other shore and nearshore processes including erosion on sandy and rocky shores, and flow processes affecting littoral biological communities.

In the swash zone two sensing heads, a dynamometer and a depth recorder, sense variations in uprush and backwash velocities, energies, discharges, and depths of flow. Both devices are electromechanical and are coupled to a recording unit on land by PVC‐insulated cable. The dynamometer (two force plates mounted back‐to‐back on a compression spring and coupled to variable resistances) has been calibrated, statically and in a flume, to obtain velocity determinations accurate to within 10 cm . sec?1 of true flow speed. Average swash zone velocities lie between 100 and 300 cm . sec?1.

A parallel‐wire resistance gauge mounted an a stilling tube records flow depths. As water level rises and falls in the tube it alters resistance in a control circuit. The land unit, amplifiers and a strip‐chart recorder, receives the output from the dynamometer and flow depth gauge. The recorder is equipped with a trip‐pen so that analysis of wave periods or other variables is possible in the field. With poles at known spacings across the shore and the trip‐pen records, velocity distributions across the swash zone can be obtained. Measurements of velocity made near the bed with the dynamometer can then be related to the local surface velocity profile.

Problems with the instrument system include inability to record velocities at several points simultaneously, and unreliable records of backwash parameters with low breakers on shingle beaches because of the small volume of flow and rapid percolation of water into the beach face.  相似文献   

14.
15.
《Coastal Engineering》2005,52(7):633-645
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of fw = 0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms.  相似文献   

16.
The effect of boundary layer streaming on the sea bed shear stresses, beneath random waves, is investigated for laminar flow as well as smooth turbulent flow. It is demonstrated how bottom friction formulas for regular waves can be used to obtain the bed shear stresses resulting from steady streaming under random waves. As a result, friction factors for steady streaming under random waves are provided, and the effect of streaming versus the effect of linear waves is discussed. For laminar flow the effect of second order Stokes waves is also included. Examples are included to illustrate the applicability of the present practical method, and results are obtained using data typical for field conditions.  相似文献   

17.
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet–Higgins from 1953. The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two-dimensional simulations of standing waves have also been made by application of a general purpose Navier–Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory experiments. The phase shift of the reflected wave train is compared with theoretical and empirical models.  相似文献   

18.
At high bed shear stress sheet flows often occur in coastal waters in which high-concentration bedload sediments are transported in a thin layer near the bed. This paper firstly constructs a theoretical model (partial differential equations, PDEs) for the intense transport of non-cohesive bedload sediments by unidirectional currents and then seeks a special solution to the PDEs to determine the thickness of the bedload particle–water mixture, which could serve as the “reference height” that is often invoked in numerical computation and simulation of suspended sediment transport in turbulent flows. Moreover, a modified formula is presented to determine the “reference concentration”. Using a “uch” approach the present study derives a 1D formula for predicting bedload transport rate in sheet flows driven by asymmetric waves, with the help of a novel formula for evaluating wave friction factor. The new bedload formula can generically take into account slope angle (positive and negative), wash load concentration in the driving water flow and other factors that affect bedload transport rate. It compares well with measured data in a large-scale wave flume [Dohmen-Janssen, C.M., Hanes, D.M., 2002. Sheet flow dynamics under monochromatic non-breaking waves. Journal of Geophysical Research, 107(C10), 1301–1321], a large-scale oscillatory water tunnel [ Hassan, W.N., Ribberink, J.S., 2005. Transport processes of uniform and mixed sands in oscillatory sheet flow. Coastal Engineering, 52, 745–770] and in a swash zone of natural beach [Masselink, G., Hughes, M.G., 1998. Field investigation of sediment transport in the swash zone. Continental Shelf Research, 18, 1179–1199].  相似文献   

19.
A numerical model, coupling an analysis of beach groundwater flow with an analysis of swash wave motion over a uniform slope, is presented. Model calculations are performed to investigate the variations of swash-induced filtration flows across the beach face for different input parameters. Swash zone sediment transport under the influence of such filtration flow across the beach face is investigated through modification of effective weight of sediment particle and modification of swash boundary layer thickness. These effects are quantified based on a bed load transport model with a modified Shields parameter.  相似文献   

20.
The present work analyzes the hydro-morphodynamics characterizing the swash region during the uprush stage. A comparison is illustrated between the sediment transport measured in a series of dam-break experiments and that predicted by the numerical hydro-morphodynamic model of Postacchini et al. (2012). The primary aim is to investigate the differences arising between the weakly coupled or uncoupled model and the measurements, in terms of hydrodynamics, tip celerity and sediment transport. The hydrodynamics are well described by the model and results have been used to calibrate both friction factor and subgrid turbulent viscosity. Comparison of numerically-computed tip celerity with experimental data reveals a fairly good agreement, i.e. a mean error of about 10%, while modeled sediment transport differs by about 40% from the available data. No evident differences are found between results obtained from the coupled and uncoupled model runs (2% for the celerity and 11% for the sediment transport rate at the tip), suggesting that for the specific flow under investigation, at the leading edge of the swash front, hydro-morphological coupling is not an issue of fundamental importance. However, for the special case here of a swash forced by a dam-break, scour occurs at the dam location, and in this case the erosion of the bed is significantly larger in the uncoupled model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号