首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the most important properties of compacted bentonite used as buffer/backfill materials, hydraulic conductivity is influenced by various factors including temperature, microstructure and suction (or degree of saturation), etc. Based on the readily available results of both temperature-controlled water-retention tests and unsaturated infiltration tests under confined (constant volume) conditions, influences of temperature and microstructure variations on unsaturated hydraulic conductivity of the compacted Gaomiaozi (GMZ01) bentonite were analyzed. Then, a revised unsaturated hydraulic conductivity model considering temperature effects and microstructure changes was developed. With this proposed model, prediction and comparison were made on the unsaturated hydraulic conductivity of the compacted GMZ01 bentonite at 20 °C. Results show that water-retention capacity of compacted GMZ01 bentonite decreases as temperature increases and the degree of the temperature influence depends on suction. Under confined conditions, influence of hydration on microstructure of compacted GMZ01 bentonite depends on pore size. The proposed model can well describe the variations of unsaturated hydraulic conductivity with suction at different temperatures. However, further improvement of the proposed model is needed to account for the phenomenon of inter-aggregate pores clogging that occurred at the initial stage of hydration of compacted GMZ01 bentonite under confined conditions.  相似文献   

2.
非饱和渗透系数是土体渗流分析的基础,成都黏土作为一种典型的非饱和膨胀土,具有吸水膨胀、失水收缩的特性,在受侧限的浸水过程中,土颗粒的膨胀致使孔隙体积减小,渗透性降低,使得直接对其进行非饱和渗透试验十分困难。根据瞬时剖面法的原理,利用EC-5土壤水分传感器测含水率、MPS-2电介质水势传感器直接同步测量同一位置的基质吸力,通过水平渗透试验研究了非饱和成都黏土在侧限条件下的渗透性。含水率和基质吸力的同步测量,保证了其测试条件的一致性,避免了采用其他土水特征曲线的影响。试验表明,试样的非饱和渗透系数为(1.33×10-11~3.14×10-9)m·s-1,非饱和渗透系数与基质吸力并非单调线性关系。基质吸力较高时,受膨胀土颗粒吸水膨胀的影响,渗透系数未出现明显变化,基质吸力降低到一定程度后,渗透系数快速增大。试验结束时土体已接近饱和,土中气体排出较慢,过水断面增加缓慢,促使渗透系数仍然持续增大。采用VG模型拟合k-s曲线,拟合参数α=0.048 kPa-1,n=1.79,m=0.48,试验结果可以用于成都黏土地区的渗流分析。  相似文献   

3.
The retention curve of French FoCa compacted clay has been determined at 20, 50 and 80 °C. A saline saturated solution has been used to control the suction. The temperature, up to 80 °C, has no influence on the e(Pc) curve. On the other hand, the water content and the liquid saturation degree are lower at 50 or 80 °C than at 20 °C. A model is proposed to take into account the influence of the temperature, in the framework of Biot's theory.A method to determine the liquid permeability of an unsaturated porous media is proposed. It is based on an analytical solution and on an experimental survey of the transient phase of desorption. This method has been applied to the compacted FoCa clay, at 20 °C. It is easy to implement and efficient. The permeability of FoCa clay has been determined for a large range of suctions.  相似文献   

4.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper involves an evaluation of a relationship describing the evolution in yield stress of unsaturated soils during hydraulic hysteresis, and an application of this relationship in an elasto-plastic framework to predict the compression curves of unsaturated soils under drained (free outflow of air and water with constant suction) or undrained (constant water content with no outflow of water and varying suction) conditions. The yield stress was quantified as the apparent mean effective preconsolidation stress obtained from compression tests reported in the literature on specimens that had experienced different hydraulic paths. It was observed that the preconsolidation stress does not follow a hysteretic path when plotted as a function of matric suction, but does when plotted as a function of the degree of saturation. Accordingly, an existing logarithmic relationship between the preconsolidation stress and matric suction normalized by the air entry suction was found to match the experimental preconsolidation stress results. This same relationship was also able to satisfactorily predict the trends in preconsolidation stress with degree of saturation by substituting the hysteretic soil–water retention curve (SWRC) into the place of the matric suction. The relationship between preconsolidation stress and suction was combined with an elasto-plastic framework to predict the compression curves of soils during drained compression, while the wetting-path relationship between preconsolidation stress and degree of saturation was combined with the framework to predict the compression curves of soils during undrained (constant water content) compression. A good match was obtained with experimental data from the literature, indicating the relevance of considering the hysteretic SWRC and preconsolidation relationships when simulating the behavior of unsaturated soils following different hydro-mechanical paths.  相似文献   

6.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
非饱和重塑黏土渗透性试验研究   总被引:5,自引:2,他引:3  
高凌霞  栾茂田  杨庆  汪东林 《岩土力学》2008,29(8):2267-2270
工程中常常遇到非饱和土渗流问题,其渗透性是非饱和土的重要研究内容。采用常规压力板仪详细研究了重塑黏土在3种不同击实功和5种不同击实含水率下的土-水特征曲线,并用变水头法测量了相应的饱和土渗透系数。结合土水曲线和饱和渗透系数,基于Van Genuchten模型和Fredlund模型,详细探讨了重塑非饱和重塑黏土在不同击实条件下的渗透性。结果表明,土样饱和渗透系数随着击实含水率的增大而减小,且随着基质吸力的增大土样渗透性差别逐渐减小。当试样吸力达到1 MPa时,可认为不同击实含水率下试样的渗透性基本相同;在轻型击实和简化轻型击实下,试样渗透性很相似。重型击实功下试样的渗透系数和轻型击实下土样渗透系数的比值 随着吸力的增大而逐渐增大,在饱和状态时比值约为1/100,当吸力达到1 MPa时比值逐渐稳定在1/10右。  相似文献   

8.
The two stress-state variable approach has been widely used in interpreting unsaturated soil behaviour. However this approach cannot take into account the effect of degree of saturation or water contents on the stress–strain behaviour and strength of unsaturated soils. The triaxial test results presented in this paper show that even if the same path of net stress and suction is followed, the stress–strain relation and strength are different due to different degrees of saturation. When other conditions are the same, the higher the degree of saturation for the soil sample is, the higher the stress ratio corresponding to a given axial strain will be. This effect can be modeled by using an elasto-plastic constitutive model coupling hydraulic and mechanical behaviour of unsaturated soils. Comparisons between the predicted and measured results are presented, which demonstrate that the model can quantitatively simulate the influence of the degree of saturation on stress–strain behaviour and strength of unsaturated soils.  相似文献   

9.
Cavity expansion theory assists in the interpretation of in situ tests including the cone penetration test and pressuremeter test. In this paper, a cavity expansion analysis is presented for unsaturated silty sand exhibiting hydraulic hysteresis. The similarity technique is used in the analysis. The soil stress–strain behaviour is described by a bounding surface plasticity model. Results of oedometric compression tests, isotropic compression tests and triaxial shear tests for both saturated and unsaturated states are used to calibrate the model. The void ratio, suction, degree of saturation and effective stress are fully coupled in the analysis. The influence of where the initial hydraulic state is located on the soil–water characteristic curve on the cavity wall pressure is investigated and found to be significant. Also, the effects of three different drainage conditions (constant suction, constant moisture content and constant contribution of suction to the effective stress) on cavity wall pressure are studied. It is found that the drainage condition in which the contribution of suction to the effective stress is constant offers a good approximation to the other two. This may simplify interpretation of in situ tests. When testing occurs quickly, meaning a constant moisture content condition prevails, a constant contribution of suction condition can be assumed without loss of significant accuracy. The contribution of suction assumed in the interpretation can be taken as being equal to the in situ value, although this discovery may not be applicable to all soil types, constitutive models and soil–water characteristic curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
干旱和半干旱黄土地区的压实土路基、垃圾填埋场黄土盖层等的持水特性和渗透特性均受温度影响。为了探究温度对全吸力范围内压实黄土水力特性的影响规律和内在机制,基于滤纸法和自行研发的小土柱试验装置对不同温度下延安新区压实黄土的土-水特征曲线(SWCC)以及渗透性曲线(HCC)进行测定。结果表明:在黄土SWCC的高吸力段体积含水率随温度升高而减小,低吸力段受温度影响不明显;黄土渗透曲线则是在低吸力段受温度影响显著,温度越高渗透性越强,当土体吸力增大或体积含水率减小至一定值后,温度对土体渗透性的影响可忽略不计。基于此结果,将改进的van Genuchten(VG)模型作为可考虑温度影响的SWCC预测函数,通过拟合实测数据得出温度相关参数并进行验证;对于渗透性曲线,以90 kPa基质吸力为分段点,在低吸力段和高吸力段分别采用统计模型和幂函数进行分段预测,能够得到与实测数据吻合较好的预测结果。  相似文献   

11.
基质吸力对非饱和土抗剪强度的影响   总被引:22,自引:1,他引:22  
林鸿州  李广信  于玉贞  吕禾 《岩土力学》2007,28(9):1931-1938
在自然界和工程实践中遇到的土大多数是非饱和土,研究吸力对非饱和土抗剪强度的作用,对于工程实践具有重要的意义。通过压力板仪和直剪仪组合试验,探讨了击实土抗剪强度和基质吸力的关系。试验结果表明:凝聚力在饱和度为40%-60%时最大,而内摩擦角则随饱和度增加而有所减少。进一步对比土-水特征曲线与抗剪强度的关系,并整合前人研究成果,指出了非饱和土中吸力对其抗剪强度影响的规律。对于无黏性土,在边界效应区不产生假凝聚力,且内摩擦角不变;在过渡区与非饱和残余区,假凝聚力和基质吸力的关系存在峰值且变化较大,内摩擦角则随吸力增加而增加。对于黏性土,残余体积含水率所对应的最小吸力可能是影响抗剪强度的界限值,小于此吸力值,φb可近似为常数。但在非饱和残余区,凝聚力将随土状态路径的不同而变化。对于重塑土,凝聚力降低;而对于原状土,则凝聚力可能不变或增加。  相似文献   

12.
晚更新世黄土渗透性的各向异性及其机制研究   总被引:3,自引:0,他引:3  
梁燕  邢鲜丽  李同录  徐平  刘树林 《岩土力学》2012,33(5):1313-1318
非饱和黄土的渗透性是非饱和黄土性质的重要组成部分。研究黄土不同方向的渗透性对确定其湿陷范围和由于水的渗透引起的黄土滑坡具有很重要的理论意义。研究了黄土渗透性的各向异性特征及其机制。以具有明显各向异性的西安Q3原状黄土为研究对象,用TEN型张力计测量了黄土试样不同方向的、不同含水率下的吸力;用变水头渗透试验测量了黄土竖直和水平方向的饱和渗透系数。结果表明,当体积含水率在23%~41%时,张力计沿不同方向插入土样所测吸力相差不大;竖直方向的饱和渗透系数是水平方向的4.02倍。在吸力测量的基础上,根据土-水特征曲线,确定了竖直和水平方向的非饱和黄土的渗透系数。得出在黄土不同方向,随着吸力的增大或减小,渗透系数减小或增大;竖直方向的渗透系数普遍地大于水平方向的渗透系数;当吸力小于57 kPa时,随着吸力的增大,竖向渗透系数与水平向渗透系数的差值减小。通过观测黄土的结构,得出黄土结构对其渗透性有重要影响。  相似文献   

13.
孙德安 《岩土力学》2009,30(Z2):13-16
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态量,不能直接考虑饱和度或含水率对非饱和土的应力-应变关系和强度的影响。在非饱和土三轴试验结果表明,即使在净应力和吸力路径相同的条件下,具有不同饱和度试样的应力-应变关系和强度也是不同的。其他条件相同时,试样饱和度越高,其应力比-应变关系曲线越高,强度越大。最新的水力-力学特性耦合的弹塑性本构模型可以定量地表示上述非饱和土的性质  相似文献   

14.
沉积物与流体流动的性质是影响水合物形成和聚集的两个重要因素,为研究水合物在沉积地层中的赋存机制必须探明高压环境下含水合物沉积物在非饱和渗流条件下的相互影响关系。以逸度差为水合物反应驱动力,反应动力学常数为Arrhenius类型,建立了包括非饱和流体流动-沉积物特征-水合物形成动力学耦合的二维模型,从理论上研究了多孔介质内流体与沉积物参数如含水率、去饱和系数、水力分布和水合物饱和度等在孔隙内的相互影响规律。结果表明,在设定的条件下,随着反应的进行孔隙水压力随时间逐渐大,在相同条件下水合物饱和度与温度增加导致孔隙水压力变大,其中水合物饱和度的影响较小,而沉积物基质吸力、去饱和系数与本征动力学常数则与孔隙水压力成反向变化,其中本征动力学常数的影响较大。  相似文献   

15.
李明玉  孙文静  黄强  孙德安 《岩土力学》2022,43(10):2717-2725
土−水特征曲线在研究非饱和土的水力与力学特性中发挥着重要的作用。生物炭具有多孔结构、高比表面积和强吸附的特性。将生物炭改性土应用于垃圾填埋场上覆盖层,因受自然环境因素的影响会使其水力特性发生改变。为了研究全吸力范围内生物炭掺量对生物炭−黏土混合土保水特性的影响,利用蒸汽平衡法(吸力范围 3~368 MPa)、滤纸法(吸力范围 0 ~40 MPa)和压力板法(吸力范围 0~1.5 MPa)控制土样的吸力,测定吸力平衡后土样的含水率和饱和度,得到全吸力范围内生物炭−黏土混合土的土−水特征曲线。试验结果表明:(1)3种吸力测试方法很好地表达了生物炭−黏土混合土全吸力范围内的土−水特征曲线。(2)生物炭能够影响黏土的保水性,但在一定的吸力范围内,生物炭−黏土混合土的保水性还与孔隙结构和孔隙中水的形态相关。(3)通过压力板法测得,试样的进气值随着生物炭掺量的增加而减小。当吸力值小于进气值时,曲线出现水平段,土样始终处于饱和状态,生物炭掺量越大,试样的保水性越好。(4)由生物炭−黏土混合土微观孔隙结构以及生物炭在黏土中的分布形态来解释生物炭改性黏土的保水能力随生物炭掺量的变化关系。  相似文献   

16.
非饱和土的水力和力学特性及其弹塑性描述   总被引:6,自引:3,他引:3  
孙德安 《岩土力学》2009,30(11):3217-3231
简单回顾了非饱和土本构模型研究的发展历程,总结了近几年非饱和土弹塑性本构模型最新研究成果,重点介绍了能统一模拟非饱和土水力性状和力学性状耦合的弹塑性本构模型。通过对建立模型过程中的几个核心问题讨论,较详细地说明该类模型的结构、性能以及相关问题。非饱和土水力性状的滞回性用假定存在饱和度弹性区间的弹塑性过程来模拟;该类耦合模型不仅考虑了吸力对非饱和土水力性状和力学性状的影响,还考虑了饱和度对应力-应变关系和强度的影响以及土体变形对土-水特征曲线的影响。用同一套模型参数,耦合模型可统一预测在吸力控制或含水率控制下沿各种应力路径下非饱和土的水力-力学特性,并简单介绍了膨胀性非饱和土的弹塑性本构模型以及耦合模型在有限元数值计算中的应用。  相似文献   

17.
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour.  相似文献   

18.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

19.
确定滤纸法试验平衡时间的数值模拟   总被引:1,自引:0,他引:1  
滤纸法是一种测量非饱和土基质吸力的重要方法,而测量结果是否准确,控制滤纸法的试验时间非常重要.基于有限元数值分析软件SEEP/W,建立滤纸法的数值模型,分析滤纸法试验过程中的水分运移过程,研究非饱和黏土的水力参数、初始重力含水率、初始干密度等因素对滤纸法平衡时间的影响.结果表明,试验开始时,干燥滤纸会迅速吸水,随后滤纸与土样吸力才逐渐平衡,以含水率为判断标准得到的平衡时间Tw会小于以吸力为判断标准得到的平衡时间Tψ,建议滤纸法的实际试验时间接近于Tψ.滤纸法的平衡时间约为4~16 d,当土样饱和渗透系数较小时,滤纸法的平衡时间大大增加,平衡时间随土水特征参数a、n、饱和渗透系数、初始含水率及干密度的增大而减小,随饱和体积含水率的增加而增加.  相似文献   

20.
Scaly clays are stiff and highly fissured clays often used as construction materials. This paper presents the results of triaxial compression tests carried out on saturated and unsaturated samples of a compacted scaly clay. Complementary investigation on the microstructural features and their evolution with the amount of water stored into the material are also presented in order to shed light on the evolution of the micro- and macroporosity with suction. The water retention behaviour of the compacted scaly clay is also addressed. The results from the controlled suction triaxial tests are used to discuss the applicability of a single-shear strength criterion to compacted double-structured clays when the effective stress concept for unsaturated soils is used. The choice of the degree of saturation to be included in the effective stress definition for obtaining a satisfactory representation of the shear strength is addressed. It is shown that the best results are obtained when the macropore degree of saturation is considered along with its evolution during the applied stress path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号