共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model is presented to describe the variations of the water table in an unconfined aquifer due to time-varying recharge applied from four rectangular basins. The model is developed by solving the linearised Boussinesq equation using the extended finite Fourier cosine transform. The time-varying recharge rate is approximated by a number of piecewise linear elements of different lengths and slopes depending on the nature of the variation in recharge rate. Application of this model for the prediction of water table fluctuations and in the sensitivity analysis of various controlling parameters on the aquifer response is demonstrated in an example. 相似文献
2.
The form and structure of a tributary confluence bar in a regulated channel are analysed and related to channel adjustment to the imposed flow regime. The bar is characterized by a tripartite structure with two facies, and by marked lateral coarsening, characteristics which relate to the changing hydraulic conditions within the narrowing channel form. 相似文献
3.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river. 相似文献
4.
A mathematical model to simulate stream/aquifer interactions in an unconfined aquifer subjected to time varying river stage was developed from the linearized Boussinesq equation using the principle of superposition and the concept of semigroups. The mathematical model requires an estimate of three parameters to simulate ground-water elevations; transmissivity, specific yield, and recharge. The solution has physical significance and includes terms for the steady-state water level, the steady-state water level as influenced by a change in river stage, a transient redistribution of water levels in the aquifer from the previous day, and a transient change in water level caused by a change in river stage. The mathematical model was tested using observed water table elevations at three locations across a 2-km-wide alluvial valley aquifer. The average absolute deviation between observed and simulated daily water levels was 0.09 m. The difference in river stage over the test year was 4.9 m. 相似文献
5.
Tomáš Galia Tereza Macurová Leonidas Vardakas Václav Škarpich Tereza Matušková Eleni Kalogianni 《地球表面变化过程与地形》2020,45(9):2048-2062
Although in-channel and floodplain large wood (LW) has been recognized as an important component of lotic ecosystems, there is still limited knowledge on the recruitment, mobility and retention of LW in rivers with an intermittent hydrological regime. In this study, we analysed the LW characteristics and related reach-scale variables of 22 reaches in a Mediterranean intermittent river (Evrotas, Greece) in order to identify predictors of in-channel and floodplain LW distribution. Our results indicated high downstream variation in LW volumes in the fluvial corridor (0.05–25.51 m3/ha for in-channel LW and 0–30.88 m3/ha for floodplain LW). In-channel and floodplain LW retention was primarily driven by the hydrological regime of the studied reaches (i.e. perennial or non-perennial) with higher volumes of LW observed in perennial sections. The width of the riparian corridor was an important predictor of LW storage at the reach scale. Non-perennial reaches had a disproportionally larger number of relatively small-diameter living trees at the expense of mature trees with larger diameters typical for riparian stands functioning as LW recruitment areas in perennial reaches. The smaller dimensions of in-channel LW in non-perennial reaches, coupled with the dominance of loose LW pieces, implies frequent LW transport during ordinary flood events. Nevertheless, overall low LW retention in the fluvial corridor under non-perennial flow regime predicts low volumes of mobilized LW. In contrast, the recruitment of relatively long and large-diameter LW from mature riparian stands in perennial reaches, together with additional LW stabilization by banks, bed sediments, living trees or other LW pieces decreases the potential for further LW transport. © 2020 John Wiley & Sons, Ltd. 相似文献
6.
ABSTRACT Water from the alluvium of ephemeral rivers in Zimbabwe is increasingly being used. These alluvial aquifers are recharged annually from infiltrating floodwater. Nonetheless, the size of this water resource is not without limit and an understanding of the hydrological processes of an alluvial aquifer is required for its sustainable management. This paper presents the development of a water balance model, which estimates the water level in an alluvial aquifer recharged by surface flow and rainfall, while allowing for abstraction, evaporation and other losses. The model is coupled with a watershed model, which generates inflows from upland catchment areas and tributaries. Climate, hydrological, land cover and geomorphological data were collected as inputs to both models as well as observed flow and water levels for model calibration and validation. The sand river model was found to be good at simulating the observed water level and was most sensitive to porosity and seepage. 相似文献
7.
Evaluating water table response to rainfall events in a shallow aquifer and canal system 总被引:1,自引:0,他引:1 下载免费PDF全文
Shallow aquifers typically have greater hydrologic connectivity and response to recharge and changes in surface water management practices than deeper aquifers and are therefore often managed to reduce the risk of flooding. Quantification of the water table elevation response under different management scenarios provides valuable information in shallow aquifer systems to assess indirect influences of such modifications. The episodic master recession method was applied to the 15‐min water table elevation and NEXRAD rainfall data for 6 wells to identify water table response and individual rainfall events. The objectives of this study were to evaluate the effects of rainfall, water table elevation, canal stage, site‐specific characteristics, and canal structure modification/water management practice on the fluctuations in water table elevations using multiple/stepwise multiple linear regression techniques. With the modification of canal structure and operation adjustment, significant difference existed in water table response in the southern wells due to its relative downstream position regarding the general groundwater flow direction and the structural modification locations. On average, water table response height and flood risk were lower after than before the structure modification to canals. The effect of rainfall event size on the height of water table response was greater than the effect of antecedent water table elevation and canal stage on the height of water table response. Other factors including leakance of the canal bed sediment, specific yield, and rainfall on i ? 1 day had significant effects on the height of water table response as well. Antecedent water table elevation and canal stage had greater and more linear effects on the height of water table response after the management changes to canals. Variation in water table response height/rainfall event size ratio was attributed to difference in S y , antecedent soil water content, hydraulic gradient, rainfall size, and run‐off ratio. After the structure modification, water table response height/rainfall event size ratio demonstrated more linear and proportional relationship with antecedent water table elevation and canal stage. 相似文献
8.
Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger 总被引:4,自引:0,他引:4
J.M. Vouillamoz G. Favreau S. Massuel M. Boucher Y. Nazoumou A. Legchenko 《Journal of Applied Geophysics》2008,64(3-4):99-108
To improve the knowledge of the regionally important Continental Terminal 3 (CT3) aquifer in south-western Niger, fifteen magnetic resonance soundings (MRS) were carried out in December 2005 in the vicinity of wells and boreholes. The output MRS geophysical parameters, i.e. water content and decay constants versus depth, were compared to hydrogeological characteristics, i.e. water table depth, total porosity, specific yield and transmissivity estimated from direct measurements, pumping tests and transient groundwater modelling. The MRS-determined parameters were then used to estimate the rates of groundwater recharge.Contained in poorly consolidated Tertiary sandstones, the CT3 aquifer's water table has continuously risen by 4 m in total over the past four decades. Additionally, a significant portion of this increase has occurred in the past decade alone, with an annual rise now ranging between 0.1 and 0.3 m depending on the monitored well. Increase in groundwater recharge due to land clearance and deforestation explains this situation. According to previous estimations, the pre-clearing recharge ranged from 1 to 5 mm per year in 1950–60 s, while more recent recharge rates (1990s–2000s) range from 20 to 50 mm per year. These recharge values are directly affected by estimated aquifer specific yield value, while the spatial variation of rates of water table rise can be attributed to large scale hydrodynamic heterogeneities in the aquifer. However, few field measurements were available to confirm these assumptions.The main results of this study are: (1) The water table depth and aquifer transmissivity are estimated from MRS output parameters with an average accuracy of ± 10% and ± 9% respectively. (2) The MRS-determined water content is linked to both the total porosity and the specific yield of the aquifer, but no quantitative formulation can be proposed as yet. (3) Using the average MRS-determined water content over the investigated area, i.e. 13%, the groundwater recharge rates can be estimated to be ~ 2 mm per year in the 1950–1960s (pre-clearing period), and ~ 23 mm per year for the last decade. (4) The variations in specific yield and transmissivity cannot explain by themselves the spatial variability of the rise of the water table. (5) The ranges in transmissivity and water content obtained from MRS are more realistic than the groundwater modelling outputs. Therefore, MRS could be used to better constrain the aquifer parameters in groundwater modelling with a dense site network.Finally, this work illustrates how MRS can successfully improve characterisation and transient multi-year groundwater balance of commonly found sedimentary aquifers, particularly when integrated with well observations and pumping tests. 相似文献
9.
The construction of a river barrage can increase groundwater levels upstream of the barrage during the rainy season. Analytical and statistical approaches were applied to evaluate the relationship between groundwater and river water at the Changnyeong–Haman river barrage in Korea using time series data of water level and electrical conductivity from June 2011 to September 2014. An artificial neural network based time series model was designed to filter out the effect of rainfall from the groundwater level data in the study area. Aquifer diffusivity and river resistance were estimated from the analytical solution of a one‐dimensional unit step response function by using the filtered groundwater level data. River resistance increased in response to groundwater level fluctuations. Cross‐correlation analyses between the groundwater and the river water showed that the lag time increased during the observation period for both the water level and the electrical conductivity while the cross‐correlation function declined for the same period. The results indicated that a constant river stage maintained at the river barrage can weaken the hydrologic stress and reduce the exchange of material between the river and the adjacent aquifer because of the deposition of fine sediment on the river bottom and walls. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Estimation of large wood budgets in a watershed and river corridor at interdecadal to interannual scales in a cold‐temperate fluvial system 下载免费PDF全文
Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
11.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea 总被引:1,自引:0,他引:1
Yongje Kim Kwang-Sik Lee Dong-Chan Koh Dae-Ha Lee Seung-Gu Lee Won-Bae Park Gi-Won Koh Nam-Chil Woo 《Journal of Hydrology》2003,270(3-4):282-294
In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782 mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5 km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers. 相似文献
13.
《水文科学杂志》2013,58(4):844-856
Abstract The feasibility of aquifer storage and recovery (ASR) was tested in a deep aquifer near Koksijde, Belgium. To achieve this, oxic drinking water was injected into a deep aquifer (the Tienen Formation) that contains anoxic brackish water. The hydraulic properties of the aquifer were determined using a step-drawdown test. Chemical processes caused by the injection of the water were studied by two push—pull tests. The step-drawdown test was interpreted by means of an inverse numerical model, resulting in a transmissivity of 3.38 m2/d and a well loss coefficient of 0.00038 d2/m5. The push—pull tests identified mixing between the injection and pristine waters, and cation exchange, as the major processes determining the quality of the recovered water. Mobilization of DOC, aerobic respiration, denitrification and mobilization of phosphate were also observed. 相似文献
14.
《Limnologica》2020
Heterotrophic flagellates (HF) play an essential function in the microbial food loops as it is an agent of biochemical cycling of limiting nutrients and being a useful bio-indicator of environmental changes. However, in spite of its profound role in aquatic ecosystem studies regarding the evaluation of the spatial and seasonal patterns of the flagellate communities are lacking in Bangladeshi water, and therefore, study on community pattern of HF in a tropical river like Padma River could be a best example for other tropical rivers of the world. The present investigation was performed with the primary objectives to evaluate flagellate community structure, their spatial and seasonal distribution patterns, and the role of hydro-biological and physicochemical variables in determining their variability. The study was conducted at selected four study sites in Padma river, Bangladesh for a period of two distinct season (dry and wet season) in 2018. Standard procedures were followed in collecting, analyzing and interpreting of sampled data. The study revealed a total of 18 genera with different degrees of specificity to hydro-biological and physicochemical variables. It further establishes significant seasonal patterns, rather than spatial differences in the distribution of the flagellate communities. We found that the higher precipitation intensity during monsoon was the critical determinant in hydrological, biological, and physicochemical fluctuations which caused a significant decline in the value of the above variables. Likewise, total phytoplankton, zooplankton, and total heterotrophic bacterial abundance was also declined five-folds during the wet season. Similarly, total abundance of HF showed a significant decline in the community during the wet season. Genus wise relative abundance (RA%) of Euglena (23.81 %) was the highest during the dry season. In conclusion, this research and data analysis techniques propose unique insights on the flagellate links to environmental and hydro-biological regime in a tropical river with global implications. 相似文献
15.
Changes in lotic benthic macroinvertebrate assemblages along the transboundary Axios‐Vardar River (Greece – Former Yugoslavian Republic of Macedonia) were examined in order to identify major anthropogenic impacts correlated to the benthic community composition during the low flow season. Macrozoobenthos and water samples were collected from 21 sites during summer 2000 and beginning of autumn 2001. Parallel to sampling, the recording of the physical structure of the sites took place using the River Habitat Survey (RHS) method. The multivariate techniques of FUZZY and Canonical Correspondence Analysis (CCA), as well as the Hellenic biotic score (HES) and the habitat quality scores (HMS, HQA) were applied to the data. Total dissolved solids and total suspended solids were found to be the primary factors affecting the structure of the observed communities. Additionally, species composition responded to anthropogenic activities, e. g. untreated sewage effluents, industrial discharges, agricultural runoff, intense water abstraction and impoundment. As expected, macrozoobenthos community composition shifted from sensitive to tolerant taxa where human impacts were most evident. 相似文献
16.
This paper presents a vertically averaged model for studying water and solute exchanges between a large river and its adjacent alluvial aquifer. The hydraulic model couples horizontal 2D Saint Venant equations for river flow and a 2D Dupuit equation for aquifer flow. The dynamic coupling between river and aquifer is provided by continuity of fluxes and water level elevation between the two domains. Equations are solved simultaneously by linking the two hydrological system matrices in a single global matrix in order to ensure the continuity conditions between river and aquifer and to accurately model two‐way coupling between these two domains. The model is applied to a large reach (about 36 km2) of the Garonne River (south‐western France) and its floodplain, including an instrumented site in a meander. Simulated hydraulic heads are compared with experimental measurements on the Garonne River and aquifer in the floodplain. Model verification includes comparisons for one point sampling date (27 piezometers, 30 March 2000) and for hydraulic heads variations measured continuously over 5 months (5 piezometers, 1 January to 1 June 2000). The model accurately reproduces the strong hydraulic connections between the Garonne River and its aquifer, which are confirmed by the simultaneous variation of the water level in the river and in piezometers located near the river bank. The simulations also confirmed that the model is able to reproduce groundwater flow dynamics during flood events. Given these results, the hydraulic model was coupled with a solute‐transport component, based on advection‐dispersion equations, to investigate the theoretical dynamics of a conservative tracer over 5 years throughout the 36 km2 reach studied. Meanders were shown to favour exchanges between river and aquifer, and although the tracer was diluted in the river, the contamination moved downstream from the injection plots and affected both river banks. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Rivers with discontinuous watercourses are part of the spectrum of river diversity. Chain-of-ponds types contain irregularly spaced, steep-sided ponds that are separated by preferential flow paths on swampy valley fill. They often contain endangered ecological communities and are receiving greater attention for conservation and restoration. Very little is known about how these river types form, how they have evolved and how they function. Here we present the Late-Quaternary evolution of one of the last remaining large-scale chain-of-ponds systems in Australia, the Mulwaree Ponds. The chain-of-ponds was fully formed by 4.5 ka, with the position and alignment of the ponds being related to the position of pools of a palaeo-river that is up to 100 ka old. Contemporary hydrogeomorphic processes are insufficient to create the ponds, but sufficient to maintain and keep them open. The phases of evolution for this chain-of-ponds system are synchronous with Late-Quaternary changes in fluvial activity documented for other rivers in southeastern Australia. The ponds at Mulwaree have significant preservation potential over thousands of years. In the current landscape they are rare forms, providing significant grounds for conservation and protection of their distinctive geodiversity. © 2020 John Wiley & Sons, Ltd. 相似文献
18.
Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics‐based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Fluvial geomorphology is rapidly becoming centrally involved in practical applications to support the agenda of sustainable river basin management. In the UK its principal contributions to date have primarily been in flood risk management and river restoration. There is a new impetus: the European Union's Water Framework and Habitats Directives require all rivers to be considered in terms of their ecological quality, defined partly in terms of ‘hydromorphology’. This paper focuses on the problematic definition of ‘natural’ hydromorphological quality for rivers, the assessment of departures from it, and the ecologically driven strategies for restoration that must be delivered by regulators under the EU Water Framework Directive (WFD). The Habitats Directive contains similar concepts under different labels. Currently available definitions of ‘natural’ or ‘reference’ conditions derive largely from a concept of ‘damage’, principally to channel morphology. Such definitions may, however, be too static to form sustainable strategies for management and regulation, but attract public support. Interdisciplinary knowledge remains scant; yet such knowledge is needed at a range of scales from catchment to microhabitat. The most important contribution of the interdisciplinary R&D effort needed to supply management tools to regulators of the WFD and Habitats regulations is to interpret the physical habitat contribution to biodiversity conservation, in terms of ‘good ecological quality’ in rivers, and the ‘hydromorphological’ component of this quality. Contributions from ‘indigenous knowledge’, through public participation, are important but often understated in this effort to drive the ‘fluvial hydrosystem’ back to spontaneous, affordable, sustainable self‐regulation. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
20.
《Limnologica》2020
The use of multimetric indices as tools for assessing aquatic ecosystem health in most of the developing countries such as Togo is still lacking. To fill this gap, we developed a macroinvertebrates-based multimetric index for the Zio river basin of Togo. Forty-two sites were assessed for the development and the validation of the Multimetric Index of Zio River Basin (MMIZB). Thirty-nine candidate metrics belonging to four categories (composition metrics, functional feeding metrics, diversity metrics and tolerance measure metrics) were evaluated. After comprehensive multiple selection procedure, six core metrics were retained to provide the final MMIZB. The results showed that the MMIZB responded to a set of organic pollution (chemical oxygen demand, ammonium, total suspended solid) and hydromorphological alterations, which corresponded to a set of gradients of human pressures affecting the ecological integrity of Zio river basin water bodies (r = 0.78, p < 0.001). The final macroinvertebrate index well distinguished the reference sites and impaired sites of a validation data set (p < 0.001) and showed a significant relationship between water and habitat quality based on Prati’s index (r = 0.73, p < 0.001) and Multimetric Macroinvertebrates Index of Vietnam (MMI_Vietnam) (r = 0.88, p < 0.001). This work underlines the relevance of the MMIZB as an effective tool for biological monitoring and decision making in water management of Zio river basin. 相似文献