首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The coupling upscaling finite element method is developed for solving the coupling problems of deformation and consolidation of heterogeneous saturated porous media under external loading conditions. The method couples two kinds of fully developed methodologies together, i.e., the numerical techniques developed for calculating the apparent and effective physical properties of the heterogeneous media and the upscaling techniques developed for simulating the fluid flow and mass transport properties in heterogeneous porous media. Equivalent permeability tensors and equivalent elastic modulus tensors are calculated for every coarse grid block in the coarse-scale model of the heterogeneous saturated porous media. Moreover, an oversampling technique is introduced to improve the calculation accuracy of the equivalent elastic modulus tensors. A numerical integration process is performed over the fine mesh within every coarse grid element to capture the small scale information induced by non-uniform scalar field properties such as density, compressibility, etc. Numerical experiments are carried out to examine the accuracy of the developed method. It shows that the numerical results obtained by the coupling upscaling finite element method on the coarse-scale models fit fairly well with the reference solutions obtained by traditional finite element method on the fine-scale models. Moreover, this method gets more accurate coarse-scale results than the previously developed coupling multiscale finite element method for solving this kind of coupling problems though it cannot recover the fine-scale solutions. At the same time, the method developed reduces dramatically the computing effort in both CPU time and memory for solving the transient problems, and therefore more large and computational-demanding coupling problems can be solved by computers.  相似文献   

2.
High-resolution geologic models that incorporate observed state data are expected to effectively enhance the reliability of reservoir performance prediction. One of the major challenges faced is how to solve the large-scale inverse modeling problem, i.e., to infer high-resolution models from the given observations of state variables that are related to the model parameters according to some known physical rules, e.g., the flow and transport partial differential equations. There are typically two difficulties, one is the high-dimensional problem and the other is the inverse problem. A multiscale inverse method is presented in this work to attack these problems with the aid of a gradient-based optimization algorithm. In this method, the model responses (i.e., the simulated state data) can be efficiently computed from the high-resolution model using the multiscale finite-volume method. The mismatch between the observations and the multiscale solutions is then used to define a proper objective function, and the fine-scale sensitivity coefficients (i.e., the derivatives of the objective function with respect to each node’s attribute) are computed by a multiscale adjoint method for subsequent optimization. The difficult high-dimensional optimization problem is reduced to a one-dimensional one using the gradient-based gradual deformation method. A synthetic single-phase transient flow example problem is employed to illustrate the proposed method. Results demonstrate that the multiscale framework presented is not only computationally efficient but also can generate geologically consistent models. By preserving spatial structure for inverse modeling, the method presented overcomes the artifacts introduced by the multiscale simulation and may enhance the prediction ability of the inverse-conditional realizations generated.  相似文献   

3.
地震波形多尺度反演的一点讨论   总被引:7,自引:2,他引:5  
基于在反演过程中对初始模型依赖性强、易陷入局部极值等问题,本文引入小波分析,提出多尺度地震波形反演方法,从而将参数反演问题转化到小波域中重要系数优化问题。利用多尺度之间的内在联系及小波域中重要系数的稀疏性,有将改进了局部极值、计算量等问题。并对几种多尺度反演策略进行了比较讨论。基于波动方程正演及褶积模型的两种反演方法的数值实便结果显示了本方法良好的效果。  相似文献   

4.
This paper concerns efficient uncertainty quantification techniques in inverse problems for Richards’ equation which use coarse-scale simulation models. We consider the problem of determining saturated hydraulic conductivity fields conditioned to some integrated response. We use a stochastic parameterization of the saturated hydraulic conductivity and sample using Markov chain Monte Carlo methods (MCMC). The main advantage of the method presented in this paper is the use of multiscale methods within an MCMC method based on Langevin diffusion. Additionally, we discuss techniques to combine multiscale methods with stochastic solution techniques, specifically sparse grid collocation methods. We show that the proposed algorithms dramatically reduce the computational cost associated with traditional Langevin MCMC methods while providing similar sampling performance.  相似文献   

5.

正演模拟是电磁数据反演的基础, 其计算速度与精度一直是制约电磁反演的两大核心问题.在三维电磁正反演中, 传统方法通过加密网格或增加插值基函数阶数提高计算精度, 但由此也降低了计算效率, 制约了三维电磁反演的实用化.因此, 如何实现大尺度模型高精度快速正演是目前电磁三维正反演中亟需解决的问题.本文将多尺度有限元法应用到麦克斯韦方程求解中.我们首先在粗网格尺度上构建满足局部特性微分算子的多尺度基函数, 进而在粗网格尺度上对原问题进行求解, 通过建立粗细两套网格间场的映射关系, 在未知数较少的粗网格上实现电磁问题求解之后, 利用粗细两套网格间场的映射关系获取细网格上电磁场响应, 由此可以在保证计算精度前提下快速获取不同尺度电磁场正演响应, 计算速度得到很大提高.此外, 本文还基于八叉树思想进行网格优化, 进一步改善三维正演效率.我们通过对典型地电结构进行多尺度有限元正演模拟并与传统有限元结果对比验证算法的有效性.最后, 我们通过模拟加拿大Voisey's Bay卵形体镍铜硫化矿区航空电磁响应以检验本文算法模拟地下复杂异常体的能力.

  相似文献   

6.
Oversampling techniques are often used in porous media simulations to achieve high accuracy in multiscale simulations. These methods reduce the effect of artificial boundary conditions that are imposed in computing local quantities, such as upscaled permeabilities or basis functions. In the problems without scale separation and strong non-local effects, the oversampling region is taken to be the entire domain. The basis functions are computed using single-phase flow solutions which are further used in dynamic two-phase simulations. The standard oversampling approaches employ generic global boundary conditions which are not associated with actual flow boundary conditions. In this paper, we propose a flow based oversampling method where the actual two-phase flow boundary conditions are used in constructing oversampling auxiliary functions. Our numerical results show that the flow based oversampling approach is several times more accurate than the standard oversampling method. We provide partial theoretical explanation for these numerical observations.  相似文献   

7.
We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. The method uses a mixed multiscale finite-element method (MMsFEM) to solve the pressure equation on a coarse grid and a streamline-based technique to solve the fluid transport on a fine-scale subgrid. The MMsFEM is based on the construction of special approximation velocity spaces that are adaptive to the local properties of the differential operator. As such, MMsFEM produces a detailed subgrid velocity field that reflects the impact of the fine-scale heterogeneous structures. By combining MMsFEM with rapid streamline simulation of the fluid transport, we aim towards a numerical scheme that facilitates routine reservoir simulation of large heterogeneous geomodels without upscaling. The new method is applied to two different test cases. The first test case consists of two (strongly) heterogeneous quarter five-spot problems in 2D. The second test case is a 3D upscaling benchmark taken from the 10th SPE Comparative Solution Project, a project whose purpose is to compare and validate upscaling techniques. The test cases demonstrate that the combination of multiscale methods and streamlines is a robust and viable alternative to traditional upscaling-based reservoir simulation.  相似文献   

8.
9.
张文生  郑晖 《地球物理学报》2019,62(6):2176-2187

本文研究了二维多孔弹性波方程的多尺度波场数值模拟方法.该多尺度方法可采用较粗的网格计算,同时又能反映细尺度上物性参数的变化信息.文中详细阐述了多尺度模拟方法与算法,并推导了相应的计算格式.基本思想是建立粗细两套网格,在粗网格上,基于有限体积方法计算更新波场;在细网格上,计算多尺度基函数,这基于有限元方法通过求解一个局部化问题得到.对含有随机分布散射体的多孔介质模型进行了数值计算,计算中应用了完全匹配层(PML)吸收边界条件,数值结果验证了本文方法和算法的正确性和有效性.

  相似文献   

10.
In the present work, the multiscale finite volume (MsFV) method is implemented on a new coarse grids arrangement. Like grids used in the MsFV methods, the new grid arrangement consists of both coarse and dual coarse grids but here each coarse block in the MsFV method is a dual coarse block and vice versa. Due to using the altered coarse grids, implementation, computational cost, and the reconstruction step differ from the original version of MsFV method. Two reconstruction procedures are proposed and their performances are compared with each other. For a wide range of 2-D and 3-D problem sizes and coarsening ratios, the computational costs of the MsFV methods are investigated. Furthermore, a matrix (operator) formulation is presented. Several 2-D test cases, including homogeneous and heterogeneous permeability fields extracted from different layers of the tenth SPE comparative study problem are solved. The results are compared with the fine-scale reference and basic MsFV solutions.  相似文献   

11.
2D多尺度非线性地震速度成像   总被引:3,自引:0,他引:3       下载免费PDF全文
将遗传算法和单纯形算法相结合,得到了一种高效、健全的2D混合地震走时反演方法.把速度场划分为不同的空间尺度,定义网格节点上的速度作为待反演参数,采用双三次样条函数模型参数化,正问题采用有限差分走时计算方法,反问题采用多尺度混合反演方法.首先在较大的空间尺度内反演,然后减小空间尺度,将大尺度的反演结果作为次一级尺度反问题的初始模型,再进行混合反演,如此类推逐次逼近全局最优解.一个低速度异常体的数值模拟试验和抗走时扰动试验表明该方法是有效和健全的.我们将该方法应用到青藏高原东北缘阿尼玛卿缝合带东段上部地壳速度结构研究中,并与前人的成果进行了对比.  相似文献   

12.
基于非规则网格声波正演的时间域全波形反演   总被引:2,自引:2,他引:0       下载免费PDF全文
全波形反演是地震资料处理中速度建模的有力工具,相比层析成像等速度建模方法它能够得到速度场的更高频成分.本文给出了基于声波方程格子法正演的时间域全波形反演方法,该方法用非规则、非结构化的三角网格来离散计算区域及模型参数,能实现网格粒度与反演分辨率在空间上的自动匹配,内存需求少,计算效率高;采用L-BFGS优化方法,以分频段变网格的方式实施多尺度反演.以二维Overthrust模型进行了速度反演数值测试,显示了该方法的高效性和潜力.  相似文献   

13.
Genetic algorithms have been shown to be powerful tools for solving a wide variety of water resources optimization problems. Applying these approaches to complex, large-scale water resources applications can be difficult due to computational limitations, especially when a numerical model is needed to evaluate different solutions. This problem is particularly acute for solving field-scale groundwater remediation design problems, where fine spatial grids are often needed for accuracy. Finer grids usually improve the accuracy of the solutions, but they are also computationally expensive. In this paper we present multiscale island injection genetic algorithms (IIGAs), in which the optimization algorithms have different multiscale populations working on different islands (groups of processors) and periodically exchanging information. This new approach is tested using a field-scale pump-and-treat design problem at the Umatilla Army Depot in Oregon, USA. The performance of several variations of this approach is compared with the results of a simple genetic algorithm. The new approach found the same solution as much as 81% faster than the simple genetic algorithm and 9–53% faster than other previously formulated multiscale strategies. These findings indicate substantial promise for multiscale IIGA approaches to improve solution of complex water resources applications at the field scale.  相似文献   

14.
In this paper we combine a multiscale data integration technique introduced in [Lee SH, Malallah A, Datta-Gupta A, Hidgon D. Multiscale data integration using Markov Random Fields. SPE Reservoir Evaluat Eng 2002;5(1):68–78] with upscaling techniques for spatial modeling of permeability. The main goal of this paper is to find fine-scale permeability fields based on coarse-scale permeability measurements. The approach introduced in the paper is hierarchical and the conditional information from different length scales is incorporated into the posterior distribution using a Bayesian framework. Because of a complicated structure of the posterior distribution Markov chain Monte Carlo (MCMC) based approaches are used to draw samples of the fine-scale permeability field.  相似文献   

15.
In this paper, we describe an efficient approach for quantifying uncertainty in two-phase flow applications due to perturbations of the permeability in a multiscale heterogeneous porous medium. The method is based on the application of the multiscale finite element method within the framework of Monte Carlo simulation and an efficient preprocessing construction of the multiscale basis functions. The quantities of interest for our applications are the Darcy velocity and breakthrough time and we quantify their uncertainty by constructing the respective cumulative distribution functions. For the Darcy velocity we use the multiscale finite element method, but due to lack of conservation, we apply the multiscale finite volume element method as an alternative for use with the two-phase flow problem. We provide a number of numerical examples to illustrate the performance of the method.  相似文献   

16.
肖卓  高原 《地震》2020,40(3):52-64
基于高精度的三维波场模拟和伴随方法,伴随成像成功实现了天然地震全波形成像在区域和全球尺度下的应用。伴随成像技术基于谱元法,使用全三维、多参数的初始模型对地震波场进行数值模拟,通过正演波场和伴随波场的相互作用快速求取目标函数的梯度,结合高性能计算技术,实现大尺度全波场成像。相比于传统的地震层析成像方法,伴随成像对地球内部结构异常体的描述更加精细和全面,更适用于构造活跃地区的深部动力学研究。本文首先介绍伴随成像方法的基本原理,随后阐述其具体实现流程,并回顾该方法在地球深部结构研究中的应用,最后对其未来发展做出展望。  相似文献   

17.
Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine scale permeability variations through the calculation of specialized coarse scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. This can be accomplished using global fine scale simulations, but this may be computationally expensive. In this paper an adaptive local–global technique, originally developed within the context of upscaling, is applied for the computation of multiscale basis functions. The procedure enables the efficient incorporation of approximate global information, determined via coarse scale simulations, into the multiscale basis functions. The resulting procedure is formulated as a finite volume element method and is applied for a number of single- and two-phase flow simulations of channelized two-dimensional systems. Both conforming and nonconforming procedures are considered. The level of accuracy of the resulting method is shown to be consistently higher than that of the standard finite volume element multiscale technique based on localized basis functions determined using linear pressure boundary conditions.  相似文献   

18.
19.
完全非线性地震波形反演问题是石油地球物理勘探领域中一个非常重要而又难度很大的问题。本文提出了多尺度地震波形反演的小波变换方法,对于一维非线性地震波形反演问题,将该方法和已有的简单迭代法及多重网格法作了比较,数值实验结果表明,本方法效果较好。  相似文献   

20.
We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号