首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

2.
Estimates of near surface layer parameters over 78°N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22-September 3,2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2,among which the main part transported into atmosphere in term of sensible heat and latent heat,which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16×10-3 in the near neutral layer,which is a little smaller than that obtained over 75°N drifting ice.However,to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999,it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes,concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.  相似文献   

3.
4.
5.
6.
During the summer of 2010 ice concentration in the Eurasian Basin, Arctic Ocean was unusually low. This study examines the sea-ice reduction in the Eurasian Basin using ice-based autonomous buoy systems that collect temperature and salinity of seawater under the ice along the course of buoy drift. An array of GPS drifters was deployed with 10 miles radius around an ice-based profiler, enabling the quantitative discussion for mechanical ice divergence/convergence and its contribution to the sea-ice reduction. Oceanic heat fluxes to the ice estimated using buoy motion and mixed-layer (ML) temperature suggest significant spatial difference between fluxes under first-year and multi-year ice. In the former, the ML temperature reached 0.6 K above freezing temperature, providing >60–70 W m?2 of heat flux to the overlying ice, equivalent to about 1.5 m of ice melt over three months. In contrast, the multiyear ice region indicates nearly 40 W m?2 at most and cumulatively produced 0.8 m ice melt. The ice concentration was found to be reduced in association with an extensive low pressure system that persisted over the central Eurasian Basin. SSM/I indicates that ice concentration was reduced by 30–40% while the low pressure persisted. The low ice concentration persisted for 30 days even after the low dissipated. It appears that the wind-forced ice divergence led to enhanced absorption of incident solar energy in the expanded areas of open water and thus to increased ice melt.  相似文献   

7.
Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin,Arctic Ocean was analyzed by PCR-DGGE.T wenty-three 16S rDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced.Phylogenetic analysis clustered these sequences within γ-prote obacteria,Cytophaga-Flexibacter-Bacteroides(CFB)group,Firmicutes and A ctinobacteria.The phylotype of Pseudoalteromonas in the γ-proteobacteria was predominant and members of the CFB group and γ-proteobacteria were highly abundant in studied sea ice brine samples.  相似文献   

8.
Circulation in the Arctic Ocean   总被引:7,自引:0,他引:7  
Much information on processes and circulation within the Arctic Ocean has emerged from measurements made on icebreaker expeditions during the past decade. This article offers a perspective based on these measurements, summarizing new ideas regarding how water masses are formed and how they circulate. Best understood at present is the circulation of the Atlantic Layer and mid-depth waters, to depths of about 1700 m, which move in cyclonic gyres in the four major basins of the Arctic Ocean. New ideas on halocline formation and circulation are directly relevant to concerns regarding changes in ice thickness. The circulation of the halocline water in part mimics that of the underlying Atlantic Layer. A number of large eddies contributing to water mass transport have been observed. The circulation of freshwater from the Pacific Ocean and from river runoff has been better delineated. Circulation within the surface layer resembles the circulation of ice, but is different in several respects. Least understood is the circulation of the deepest waters, though some information is available. Recent observed changes in the surface waters and warm Atlantic Layer have been correlated with the North Atlantic Oscillation. While these changes are dramatic, the qualitative circulation pattern may not have been altered significantly.  相似文献   

9.
Large increases in the temperature of the Atlantic Layer in the Arctic Ocean have been observed since the early to mid-1990s and have continued through to the present. These changes were detected in 1994 and in 1999 with acoustic "sections" using acoustic thermometry. Both icebreaker and submarine CTD sections have confirmed these observations. Calculations of the travel time of acoustic mode 2 for the submarine CTD sections show a linear correlation with the mean temperature of the Atlantic Layer of the section. A cabled-to-shore undersea mooring system of Arctic Ocean observatories is needed to provide real-time year-round observations using conventional as well as acoustic remote sensing techniques.  相似文献   

10.
本文利用电镜扫描方法 (SEM)对比分析了南极乔治王岛无冰区海滩沉积、冰碛物以及阿德雷岛湖泊沉积等典型沉积环境中的石英砂表面结构特征 ,得出了乔治王岛各典型沉积环境中石英砂表面结构特征的颗粒频率曲线。结果表明 :不同沉积环境下的石英砂颗粒表面结构特征具有相似性 ,这主要和南极地区广泛发育的冰川作用有关 ,同时 ,它们也有各自典型的特征组合 ,这些典型特征组合的不同反映了石英砂后期的搬运历史和沉积环境的差异。本文还依据石英砂表面特征的颗粒出现频率 ,利用聚类分析方法对研究区内三级海岸阶地上的沉积物和一个未知成因的样品进行了沉积环境的判别分析 ,结果证明石英砂微形貌特征可以作为南极地区沉积环境识别的有效手段  相似文献   

11.
The spatial distribution of snow cover on the central Arctic sea ice is investigated here based on the observations made during the Third Chinese Arctic Expedition. Six types of snow were observed during the expedition: new/recent snow, melt-freeze crust, icy layer, depth hoar, coarse-grained, and chains of depth hoar. Across most measurement areas, the snow surface was covered by a melt-freeze crust 2-3 cm thick, which was produced by alternate strong solar radiation and the sharp temperature decrease over the summer Arctic Ocean. There was an intermittent layer of snow and ice at the base of the snow pack. The mean bulk density of the snow was 304.01±29.00 kg/m3 along the expedition line, and the surface values were generally smaller than those of the subsurface, confirming the principle of snow densification. In addition, the thicknesses and water equivalents of the new/recent and total-layer snow showed a decreasing trend with latitude, suggesting that the amount of snow cover and its spatial variations were mainly determined by precipitation. Snow temperature also presented significant variations in the vertical profile, and ablation and evaporation were not the primary factors in the snow assessment in late summer. The mean temperature of the surface snow was 2.01±0.96°C, which was much higher than that observed in theinterface of snow and sea ice.  相似文献   

12.
Pacific water exits the Chukchi Sea shelf through Barrow Canyon in the east and Herald Canyon in the west,forming an eastward-directed shelfbreak boundary current that flows into the Beaufort Sea.Here we summarize the transformation that the Pacific water undergoes in the two canyons,and describe the characteristics and variability of the resulting sbelfbreak jet,using recently collected summertime hydrographic data and a year-long mooring data set.In both canyons the northward-flowing Pacific winter water switches from the western to the eastern flank of the canyon,interacting with the northward-flowing summer water.In Barrow canyon the vorticity structure of the current is altered,while in Herald canyon a new water mass mode is created.In both instances hydraulic effects are believed to be partly responsible for the observed changes.The shelfbreak jet that forms from the canyon outflows has distinct seasonal configurations,from a bottom-intensified flow carrying cold,dense Pacific water in spring,to a surface-intensified current advecting warm,buoyant water in summer.The current also varies significantly on short timescales,from less than a day to a week.In fall and winter much of this mesoscale variability is driven by storm events,whose easterly winds reverse the current and cause upwelling.Different types of eddies are spawned from the current,which are characterized here using hydrographic and satellite data.  相似文献   

13.
The sea ice community plays an important role in the Arctic marine ecosystem. Because of the predicted environmental changes in the Arctic environment and specifically related to sea ice, the Arctic pack ice biota has received more attention in recent years using modern ice-breaking research vessels. Studies show that the Arctic pack ice contains a diverse biota and besides ice algae, the bacterial and protozoan biomasses can be high. Surprisingly high primary production values were observed in the pack ice of the central Arctic Ocean. Occasionally biomass maximum were discovered in the interior of the ice floes, a habitat that had been ignored in most Arctic studies. Many scientific questions, which deserve special attention, remained unsolved due to logistic limitations and the sea ice characteristics. Little is know about the pack ice community in the central Arctic Ocean. Almost no data exists from the pack ice zone for the winter season. Concerning the abundance of bacteria and protozoa, more studies are needed to understand the microbial network within the ice and its role in material and energy flows. The response of the sea ice biota to global change will impact the entire Arctic marine ecosystem and a long-term monitoring program is needed. The techniques, that are applied to study the sea ice biota and the sea ice ecology, should be improved.  相似文献   

14.
15.
16.
17.
海洋表层叶绿素a浓度和浮游植物初级生产力是海洋生态系统的基础参数,可有效评估海洋生态系统的初级生物量及其变化.阐明北冰洋浮游植物生物量和初级生产力的时空变化,对预测北极环境快速变化背景下的海洋生态系统潜在变化、科学指导北冰洋的生态管理具有重要意义.本文总结了基于卫星数据的海表叶绿素a浓度和初级生产力的研究方法,整理归纳...  相似文献   

18.
19.
20.
A winter optical experiment by an artificial lamp was conducted in the Amundsen Bay of Arctic Ocean from November of 2007 to January of 2008.The radiation field emitted from an artificial lamp was measured and is introduced in this paper ,and the optimized experiment project is discussed.It is demonstrated that the minimum size allowed of the lamp is determined by both the field of view(FOV) of optical instrument and the measuring distance from the lamp.Some problems that might influence on the experiment result often occur for a simple fluorescent lamp, such as instability,spatial nonuniformity,light divergence,effect of lamp temperature ,etc.By the analysis of the light radiation,three kind of measures are proposed to control the quality of the experiment,i.e.keeping consistency of lamp size with FOV of instrument,calibrating in situ downwind,and conducting measurement in effective range.Among them,the downwind calibration is the key step to overcome most problems arose by the lamp.The experiment indicated that the reliable results can be obtained only when the optical measurement is coordinated with the radiation field of artificial lamp.The measured radiation property of the lamp was used to advise the field experiment to minimize measuring error.As the experiment by artificial lamp was the first attempt in the Arctic Ocean,the experience given by this paper is a valuable reference to the correlative studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号