首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
Stabilizing piles are widely used to improve stability level of slopes to avoid landslides. In this paper, the full failure process of clay slopes reinforced using stabilizing piles was produced using serialized centrifuge model tests under surface loading conditions. The strength of pile material and the pile location closer to the slope top were both indicated to have a positive influence on the limit bearing capacity of the reinforced slope on the basis of test observations. The displacement field over the reinforced slope was measured during loading and used to capture a significant progressive failure caused by the surface loading. Local failure started near the inner edge of the load plate and expanded in a downward direction to produce a final slip surface. The pile exhibited a bending failure coupled with the progressive failure of the slope. The failure mechanism could be illustrated with the deformation localization in the slope that developed prior to the slip surface. The surface load exhibited a significant spreading behavior within the slope according to the displacement distribution of the slope.  相似文献   

2.
A series of centrifuge model tests was conducted to investigate the failure mechanism of pile-reinforced slopes under self-weight loading and vertical loading conditions. An integrated analysis method was proposed based on the image-based measurement results of the displacement of the slope in the tests. The failure process of a pile-reinforced slope was quantified based on the measured deformation process over the entire slope, which was shown to depend primarily on the loading conditions. The deformation localisation was discovered in the slope during loading and was effectively described using a newly introduced index, the Diversity Factor of Displacement (DFD). The deformation localisation of the slope developed and caused the progressive formation of the slip surface. At the same time, a local failure at a point on the slip surface resulted in new deformation localisation, and the influence expanded with the centre of the failure point and waned with increasing distance from the failure point. The deformation localisation process and the deformation-failure process of the piles interacted as both cause and effect and developed alternately. The failure mechanism of the pile-reinforced slopes was used to explain the effects of several influencing factors on the bearing capacity of the reinforced slope, such as the pile spacing, pile location, and gradient of the slope.  相似文献   

3.
Xu  Xiangtian  Li  Qionglin  Xu  Guofang 《Acta Geotechnica》2020,15(5):1289-1302

This paper aims to assess the characteristics of the deformation and strength behavior of frozen soils at different temperatures under monotonic and cyclic triaxial conditions. The deformation and failure patterns of the specimens change from ductility to brittleness with decreasing temperatures under both monotonic and cyclic loadings. The development of axial strain and stiffness with increasing number of cycles for the soils under cyclic loading is presented and analyzed in detail. A collapse behavior in strength and stiffness is observed in tests of frozen soils at ??5 °C, ??7 °C and ??9 °C. The difference in frictional sliding between the samples with high ductility and those with high brittleness is attributed to the different patterns of deformation and failure. The dynamic modulus is plotted versus axial strain, and the state where the stiffness begins to decrease is employed as the criterion of cyclic failure. The proposed criterion of cyclic failure is verified to be more suitable for frozen soils with high brittleness and seems to be consistent with the peak strength under monotonic loading. Finally, the cyclic stress ratios are plotted against the number of cycles up to this failure criterion, and the effect of temperatures on cyclic strength is evaluated.

  相似文献   

4.
张嘎  金红柳 《岩土力学》2016,37(Z2):137-143
水位下降是导致滑坡的重要原因之一,而土钉是加固土坡的有效手段。进行离心模型试验,再现了水位下降时土钉加固土坡的变形和破坏过程,测量了土坡的位移变化。试验结果表明,水位下降条件下土钉加固土坡的破坏模式以绕钉破坏为主,滑裂面从坡顶逐渐向下发展至坡面;土钉加固土坡的破坏过程与变形局部化过程表现出显著的耦合变化;土钉加固机制主要表现为通过土钉与坡体的相互作用,减小土坡的变形和变形局部化程度,从而提高土坡的稳定性。增加土钉长度使得滑裂面向坡内部移动,显著减小土坡的变形及变形局部化程度,从而提高了土坡安全性。  相似文献   

5.
Interface damage and delamination is usually accompanied by frictional slip at contacting interfaces under compressive normal stress. The present work is concerned with an analysis of progressive interface failure using the cohesive crack model with the critical stress softening and frictional traction present at the contact. Both monotonic and cyclic loadings are considered for anti‐plane shear of an elastic plate bonded to a rigid substrate by means of cohesive interface. An analytical solution can be obtained by neglecting the effect of minor shear stress component. The analysis of progressive delamination process revealed three solution types, namely: short, medium and long plate solutions. The long plate solution was obtained under an assumption of quasistatic progressive growth of the delamination zone. In view of snap back response, the quasistatic deformation process cannot be executed by either traction or displacement control. The states of frictional slip accompanied by shake down or incremental failure are distinguished in the case of cyclic loading, related to load amplitude and structural dimensions. The analysis provides a reference solution for numerical treatment of more complex cases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
循环荷载作用下边坡岩土体容易产生变形破坏,边坡各部位的破坏方式存在不同。基于数值模拟技术,建立2个不同高度的边坡模型,分析了坡肩处质点分别在10Hz垂向压缩和水平剪切循环荷载作用下的运动轨迹特征,并依据物体受力运动与变形之间的关系确定了坡肩潜在的破坏方式。研究表明: 2种加载方式下坡肩质点的运动轨迹均呈椭圆形,加载方式和坡高对坡肩质点的运动轨迹及边坡的潜在破坏方式都有一定影响。低边坡坡肩质点在垂向压缩循环荷载下主要表现为垂向振动,该处岩体发生拉破坏的可能性大; 在水平剪切循环作用下该质点主要表现为水平向振动,坡肩岩体发生剪破坏的可能性大。对高边坡而言,坡肩质点水平向与垂直向的振动幅值之差较低边坡坡肩质点的明显小,说明高边坡坡肩在这2种循环荷载最有可能产生拉剪破坏。  相似文献   

7.
In recent years, blocks created by pressure grouting of cement into soil were used to reinforce slopes by targeting specific weak areas. A clear understanding of the block reinforcement mechanism is essential for the accurate evaluation of the stability of block-reinforced slopes and reasonable design of block layouts. A series of centrifuge model tests was conducted to investigate the bearing capacity and the full deformation and failure behavior of block-reinforced slopes, with a focus on the influence of block layouts on the reinforcement effect. A block reinforcement with a reasonable layout was confirmed to increase the stiffness and the ultimate bearing capacity of the slope. The block reinforcement significantly changed the failure mode to the complex disturbance and destruction from slippage failure in an unreinforced slope. The block reinforcement restrained the deformation localization around the blocks and thus prevented the development of the coupling effect between the deformation localization process and the failure process in an unreinforced slope during loading. Such a reinforcement mechanism could be used to explain why the block reinforcement increased the bearing capacity and changed the failure mode of the slope. The blocks exhibited significant motion along with the development of deformation localization in the slope during loading. The block reinforcement effect was significantly affected by the rotation of blocks, which was determined by the block layout.  相似文献   

8.
高昂  张孟喜  刘芳  梁勇 《岩土力学》2016,37(8):2213-2221
目前对土工格室加筋路堤研究主要集中在静载条件下,动载条件下研究的比较少。为研究分级循环荷载下土工格室加筋路堤的力学性能,采用USTX-2000的动力加载装置进行加载,对土工格室加筋路堤在不同加筋层数、格室高度、格室焊距等工况下进行一系列模型试验。对分级循环荷载下路堤的竖向变形和坡面法向变形进行研究,并与固定振幅循环荷载及静载作用下的路堤进行对比分析,研究不同加载方案路堤力学性能的差异性。试验结果表明,土工格室加筋能显著提高路堤承受分级循环荷载的能力和减小竖向累积沉降量,在加筋间距一定的情况下,两层及以上加筋效果比单层加筋效果更显著,格室高度增大和格室焊距减小均可不同程度提高路堤承受分级循环荷载能力并减小竖向累积沉降量;加筋可减小路堤分级循环荷载下的坡面法向变形,格室高度增大和格室焊距减小在分级循环荷载幅值相同时均能减小坡顶和坡中处的法向累积变形;分级循环荷载作用下,当振次≥8 000或幅值≥80 kPa时,路堤竖向累积沉降量超过固定振幅循环荷载,当振次≥9 000或振幅≥90 kPa时,路堤坡顶法向累积变形超过固定振幅循环荷载;分级循环荷载作用下,路堤竖向和坡面法向累积变形均大于静载,加筋可有效减小分级循环荷载和静载作用下坡面法向累积变形差。  相似文献   

9.
An interface constitutive model is presented accounting for slip and sliding effects and also for dilatancy phenomena. The microslip effects are described by considering spherical asperity interaction with variation of contact area and generation of progressive or reverse slip zones. The incremental constitutive equations are derived with proper memory rules accounting for generation and annihilation of particular slip zones during the process of variable loading. It is further assumed that sliding of spherical contacts occurs along large asperities whose slope varies due to the wear process. The predicted shear and dilatancy curves are shown to provide close quantitative simulation of available experimental data. The strain ratchetting effect for non-symmetric cyclic loading was exhibited using the asperity wear model. The model presented could be applied to simulate rock joints, masonry, or concrete cracked interfaces, under monotonic and cyclic loading.  相似文献   

10.
Luo  Fangyue  Huang  Renlong  Zhang  Ga 《Acta Geotechnica》2020,15(10):3027-3040

A series of centrifuge model tests of geogrid-reinforced slopes with superstructure was conducted under differential settlement condition. The influence of reinforcement placement on the deformation and failure behavior of the slope and superstructure is investigated by considering different numbers of geogrid layers. The response of the slope and superstructure is analyzed based on a full-field displacement measurement via image analysis. The differential settlement induces distinguishable superstructure movement and slope deformation above the subsidence zone. The slope displacement, close to the vertical direction, appears only in a limited zone. An integrated analysis scheme of deformation and failure processes is adopted to reveal the failure mechanism of both the unreinforced and reinforced slopes: a certain level of deformation localization induced by differential settlement results in the local failure, and adversely, the local failure aggravates the deformation localization near it. The geogrid reinforcement mechanism is further clarified as the reduction on the deformation localization of the slope due to geogrid placement. The geogrid reinforcement effect can be comprehensively described with two respects: hooping effect and shielding effect, which illustrates the influence sphere and degree of geogrid reinforcement on restraining the slope deformation. The geogrid reinforcement is proven effective to improve the safety of the slope and superstructure.

  相似文献   

11.
高昂  张孟喜  朱华超  姜圣卫 《岩土力学》2016,37(7):1921-1928
为探究土工格室加筋路堤在循环荷载及静载下的各种性能,利用美国GCTS公司的USTX-2000加载装置进行加载,通过改变加筋层数、格室高度,格室焊距对土工格室加筋路堤进行一系列模型试验。对各种工况下加筋路堤极限承载力、长期循环荷载及固定振次循环荷载后极限承载力的变化进行研究。试验表明,土工格室加筋能显著提高地基极限承载力并能显著减小坡顶和坡中临界破坏时的法向累积变形,在加筋间距一定的情况下,加筋层数增加和格室高度增大均可不同程度提高极限承载力并减小临界破坏时坡顶法向累积变形,格室焊距的减小也可在一定程度提高极限承载力,格室焊距对边坡法向变形影响不大;长期循环荷载下固定间距加筋层数对路堤竖向累积沉降量影响不大,而对边坡坡顶法向累积变形有一定影响,格室高度增大和格室焊距减小均可不同程度减小路堤竖向累积沉降量和坡面法向累积变形;越靠近加载点处,路堤土压力值受加筋影响越显著,加筋提高了土体刚度和密实度,使加筋路堤土压力值较无筋路堤明显增大;对于无筋路堤,改变动载幅值和振次均导致振后极限承载力有不同程度的降低,而对于加筋路堤,当动载幅值≥30 kPa或动载振次≥1 000时,振后极限承载力均有不同程度的提高。  相似文献   

12.
The influence of static shear stress on undrained cyclic behavior of nonplastic and low-plasticity silts has been studied by means of undrained cyclic torque-controlled ring-shear tests. The cyclic and post-cyclic behavior of silty soils assumed on sliding surface were investigated to assess the liquefaction potential and cyclically induced deformation of silty slopes. Six different initial static shear stresses corresponding to slope angles from 0° to 25° were examined. To better understand undrained cyclic behavior of silt governed by a change in clay content, three different mixtures were achieved by mixing of nonplastic silt with 0%, 10%, and 20% of commercially available clay. These tests were conducted to simulate field conditions prior to earthquake with initial static shear stresses corresponding to slopes and those with no initial static shear stresses of level grounds. The gradual loss of mobilized undrained cyclic shear resistance after failure and pore water buildup in relation to a number of cycles was observed. The undrained response of the soil to cyclic shear stress loading with the constant amplitude revealed the significant effect of the initial static shear stress on the excess pore water pressure generation and post-failure shear resistance. Test results showed that an increase in the initial static shear stress at the given initial effective normal stress is associated with an increase of mobilized shear resistance at its peak state; however, the actual resistance to liquefaction diminished for both nonplastic and low-plasticity silts. During both cyclic and post-cyclic stages of loading, distinctly different types of shear deformation were identified. In order to evaluate mobility of landslides, a modified conventional brittleness index for seismic loading, , was proposed and used to characterize unlimited deformation of silts.  相似文献   

13.
This study explores the link between the monotonic and cyclic undrained behaviour of sands using the discrete element method (DEM). It is shown that DEM can effectively capture the flow deformation of sands sheared under both monotonic and cyclic undrained loading conditions. When subjected to cyclic shearing, flow-type failure is observed for a loose sample, while cyclic mobility is observed for a dense sample. A strong correlation between the monotonic and cyclic loading behaviour that has been revealed experimentally is also confirmed in DEM simulations: (a) flow deformation occurs in the compressive loading direction when the cyclic stress path intersects the monotonic compression stress path prior to the monotonic extension stress path, and vice versa; (b) the onset of flow deformation in q\(p^{\prime }\) space is located in the zone bounded by the critical state line and the instability line determined from monotonic simulations. Hill’s condition of instability is shown to be effective to describe the onset of flow failure. Micro-mechanical analyses reveal that flow deformation is initiated when the index of redundancy excluding floating particles drops to below 1.0 under both monotonic and cyclic loading conditions. Flow deformation induced by either monotonic or cyclic loading is characterized by an abrupt change of structural fabric which is highly anisotropic. The reason why the dense sample dilated during monotonic loading but showed cyclic mobility (temporary liquefaction) during cyclic loading is attributed to the repeating reversal of loading direction, which leads to the periodic change of microstructure.  相似文献   

14.
土钉加固黏性土坡加载的离心模型试验研究   总被引:1,自引:0,他引:1  
曹洁  张嘎  王丽萍 《岩土力学》2012,33(6):1696-1702
进行了不同坡度土钉加固边坡坡顶加载的离心模型试验,观测了土坡的破坏过程并测量土坡的位移场,研究了土钉加固黏性土坡的承载力、变形和破坏规律以及坡角对其破坏规律的影响。试验结果表明,坡顶荷载的增加引起土坡变形的增加,变形的集中产生和发展导致滑裂面的形成并使土坡发生破坏。土钉变形规律受加载阶段和加载底板的综合影响,坡顶荷载越大,接近坡顶的土钉弯曲挠度越大,钉土间的相互作用越强。土坡的坡角越大,承载力越低,土体呈现出更显著的向坡面位移的趋势。  相似文献   

15.
程星磊  王建华  王哲学 《岩土力学》2018,39(9):3285-3293
开展了张紧式吸力锚在侧壁最优系泊点处遭受平均荷载和循环荷载共同作用下的模型试验,着重研究了软黏土中吸力锚在等幅及变幅循环荷载下的变形失稳过程。研究发现,循环累积位移过大是锚发生破坏的主要原因。对于等幅循环加载试验,由于竖向附加荷重的施加,锚在水平向的循环累积位移要明显大于竖向,表现为明显的水平破坏模式。在特定的平均荷载水平下,循环荷载水平越高,锚的累积位移发展得越快,达到破坏所需的循环次数就越少。循环位移随循环次数的增长变化不明显,但随循环荷载水平的增大而增大。对于变幅循环加载试验,系泊点各方向的循环累积位移与循环位移均与循环荷载水平成正比。不同的循环加载时程下,锚的竖向累积位移均比水平累积位移大,表现为偏向于竖向破坏的中间破坏模式。锚前期的循环加载历史对后续加载产生的累积变形有明显影响。与静力加载相比,循环加载时锚的运动方向角有所增大,这可能是由于锚底孔压的累积要大于锚侧孔压的累积,从有效应力的角度分析,锚底有效应力的减少相对锚侧明显,进而使得锚竖向承载力减小得更多,导致锚的竖向运动更明显。  相似文献   

16.
陈龙  楚锡华  徐远杰 《岩土力学》2015,36(6):1598-1605
亚塑性模型为模拟颗粒材料的非线性力学行为提供了一条新途径,特别是CLoE亚塑性模型在模拟应变局部化时具有一定的优势。然而该模型在模拟小幅应力-应变循环时表现出一定的锯齿效应。为了克服该效应,基于颗粒间应变张量的概念发展了修正的CLoE亚塑性模型以正确模拟循环荷载下密砂的力学行为。此外,为保证单调荷载作用下修正模型与原模型预测结果的一致性,改进了颗粒间应变率及颗粒间最大应变的定义。数值算例表明:(1)修正模型保留了克服锯齿效应的优点。(2)修正模型能够反映不同振幅条件下的卸载刚度。(3)在大振幅循环条件下,滞回圈的面积随着循环次数增加而增大。(4)修正模型能够保证单调加载条件下所得结果与原模型的一致性。(5)修正模型可以反映材料的疲劳破坏机制。  相似文献   

17.
三峡库区基岩顺层滑坡大多以砂/泥岩或泥/泥灰岩互层滑坡为主,力学机制以顺层滑移剪切为主。新近发现的青石-抱龙段顺层灰岩库岸,岸坡岩性以灰岩、白云岩为主。在21个顺向斜坡中9个斜坡存在岩层弯曲现象,高程分布在145~175m,且大量层面有擦痕,局部岩层强烈弯曲形成了类似逆断层的现象。这些变形破坏现象受控于重力作用下沿层面的滑移-弯曲力学机制。通过连续-非连续数值分析方法研究表明,在这一带岸坡中约200m的主动平直滑移段下滑力驱动了约30m的被动弯曲隆起段变形,被动弯曲隆起段位移地形变缓、岩层增厚。当前青石-抱龙一带顺层灰岩库岸岩层隆起和松动较小,处于滑移-弯曲变形的早期阶段,主要以累进性变形为主。建议对该段库岸进行专业监测,并开展进一步的调查研究工作。  相似文献   

18.
李鹏  苏生瑞  黄宇  苏卫卫  高雄飞 《岩土力学》2015,36(12):3576-3582
以四川省S303线卧龙至巴郎山段K70+340~K70+388处崩塌为研究对象,采用地质力学分析和UDEC离散元模拟相结合的方法,揭示了震裂-滑移式崩塌形成机制及其变形破坏规律。结果表明:该类型崩塌主要发生在有陡倾结构面的顺层岩质斜坡;地震波对斜坡岩体主要为拉剪破坏,并呈现出坡顶和坡面处拉应力大于坡体内部的规律;地震力对斜坡的影响表现出顶部较下部、坡面较坡内变形快、变形量大的特点;随地震波加速度的幅值的增大,斜坡动力响应也越强烈,崩塌体的位移也越大;震裂破坏过程可以归纳为6个阶段,即(1)地震作用下岩体的损伤和拉张裂缝的形成;(2)拉张裂缝的拓展和软弱滑移面的贯通;(3)崩塌体整体震散和局部岩块的滑移;(4)局部岩块失稳,产生岩体的坠落、弹射、抛射和滚落现象;(5)岩体整体产生坠落、弹射、抛射和滚落;(6)崩塌体趋于稳定。该问题的研究不仅可以为地质灾害的分析提供新方法,而且对震区防灾、减灾具有一定的指导意义。  相似文献   

19.
The experimental study of fatigue damage to coal under cyclic loading is important for guiding the design of pillars in underground coal mines where the pillars may be affected by repeated mining activity. In this paper, the strength, deformation, energy dissipation, and fatigue of samples of coal from a mine in China are studied using cyclic loading with a servo-controlled rock mechanical test system. The results indicate that coal is more likely to suffer fatigue damage than other, harder, rock lithologies. Under uniaxial cyclic loading, the fatigue failure “threshold value” for the coal samples studied is less than 78% of its uniaxial strength, but there is also a certain amount of fatigue damage when the cyclic loading/unloading experiments are carried out below the threshold value for fatigue failure. Axial deformation during the tests can be divided into three stages: initial deformation, constant steady deformation, and accelerated deformation. Transversal deformation can be divided into two stages: stable deformation and accelerated deformation. During cyclic loading experiments, imminent sample failure is signaled when transversal deformation increases significantly and quickly and the deformation recovers little when the load is removed. With an increasing number of loading/unloading cycles, a graph of energy dissipation per unit volume versus number of cycles presents an L-shaped curve when the coal samples do not suffer fatigue failure. However, for the coal samples that do rupture due to fatigue, the curve is U-shaped. Under cyclic loading, the evolution of compaction, strain hardening, strain softening, and failure of coal can be revealed in great detail by fatigue damage experiments.  相似文献   

20.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号