首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large deformation soil behavior underpins the operation and performance for a wide range of key geotechnical structures and needs to be properly considered in their modeling, analysis, and design. The material point method (MPM) has gained increasing popularity recently over conventional numerical methods such as finite element method (FEM) in tackling large deformation problems. In this study, we present a novel hierarchical coupling scheme to integrate MPM with discrete element method (DEM) for multiscale modeling of large deformation in geomechanics. The MPM is employed to treat a typical boundary value problem that may experience large deformation, and the DEM is used to derive the nonlinear material response from small strain to finite strain required by MPM for each of its material points. The proposed coupling framework not only inherits the advantages of MPM in tackling large deformation engineering problems over the use of FEM (eg, no need for remeshing to avoid mesh distortion in FEM), but also helps avoid the need for complicated, phenomenological assumptions on constitutive material models for soil exhibiting high nonlinearity at finite strain. The proposed framework lends great convenience for us to relate rich grain-scale information and key micromechanical mechanisms to macroscopic observations of granular soils over all deformation levels, from initial small-strain stage en route to large deformation regime before failure. Several classic geomechanics examples are used to demonstrate the key features the new MPM/DEM framework can offer on large deformation simulations, including biaxial compression test, rigid footing, soil-pipe interaction, and soil column collapse.  相似文献   

2.
3.
Understanding the flow of ice in glaciers and polar ice sheets is of increasing relevance in a time of potentially significant climate change. The flow of ice has hitherto received relatively little attention from the structural geological community. This paper aims to provide an overview of methods and results of ice deformation modeling from the single crystal to the polycrystal scale, and beyond to the scale of polar ice sheets. All through these scales, various models have been developed to understand, describe and predict the processes that operate during deformation of ice, with the aim to correctly represent ice rheology and self-induced anisotropy. Most of the modeling tools presented in this paper originate from the material science community, and are currently used and further developed for other materials and environments. We will show that this community has deeply integrated ice as a very useful “model” material to develop and validate approaches in conditions of a highly anisotropic behavior. This review, by no means exhaustive, aims at providing an overview of methods at different scales and levels of complexity.  相似文献   

4.
The distribution of deformation bands in damage zones of extensional faults in porous sandstones has been analyzed using 106 outcrop scanlines along which the position and frequency of deformation bands have been recorded. The analysis reveals a non-linear relationship between damage zone width and fault throw, a logarithmic decrease in deformation band frequency away from the fault core, as well as a fractal spatial distribution associated with clustering of the deformation bands. Furthermore, damage zones appear wider in the hanging wall than in the footwall, although the deformation band density is similar on both sides. Statistical trends derived from the database imply that fault growth in porous sandstones can be considered as a scale invariant process. From an initial process zone, the damage zone grows by a constant balance between the development of new deformation bands in the existing damage zone and the creation of new bands outside. Moreover, as the width of the damage zone increases throughout the active lifetime of a fault, the distribution of the deformation bands in the damage zone remains self-similar. Hence band distribution and damage zone width for seismically mapped faults can be predicted from the relationships found in this paper.  相似文献   

5.
Multiscale modeling of a sensitive marine clay   总被引:1,自引:0,他引:1  
This paper examines the mechanical behavior of a sensitive marine clay. Various laboratory tests on intact and reconstituted samples of Guinea Gulf marine clay were performed under isotropic compression and drained triaxial compression at constant confining stresses. Microstructure analysis on intact and reconstituted samples was also carried out under different loading conditions. The effect of inter‐aggregates bonding on mechanical properties is discussed. Based on experimental analysis, a new modeling method is proposed. In this approach, the clay is regarded as an assembly of aggregates of clay particles. An inter‐aggregate contact law is introduced relating contact forces to aggregates relative displacements. The deformation of the assembly can be obtained by integrating the movement of the inter‐aggregate contacts in all orientations. Thus, the effect of inter‐aggregates bonds and debonding is considered in a direct way. The model is evaluated through comparisons between the predicted and measured results on Guinea Gulf marine clay. The evolutions of local stresses, strains, and bonds in inter‐aggregates planes are discussed to explain the anisotropy induced by the applied loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Geomaterials respond to some environmental circumstances through generation of a series of feedback mechanisms of damage, deformation, erosion, and chemical processes or reactions: e.g. osmosis, dissolution and precipitation, mineral transformations. These mechanisms are coupled at different scales. Several natural geomechanical processes, as sediment compaction, rock weathering or landsliding appear to include such sequences of mechanisms. A multi-physics model of sediment compaction is examined from the point of view of feedbacks and feedforwards for the phenomena involved at micro- and meso-scale. Two types of feedback are identified: constitutive feedbacks and boundary condition feedbacks. A numerical sensitivity study points out which feedbacks and feedforwards are strong and which are weak.  相似文献   

7.
Rock failure is observed around boreholes often with certain types of failure zones, which are called breakouts. Laboratory‐scale drilling tests in some high‐porosity quartz‐rich sandstone have shown breakouts in the form of narrow localized compacted zones in the minimum horizontal stress direction. They are called fracture‐like breakouts. Such compaction bands may affect hydrocarbon extraction by forming barriers that inhibit fluid flow and may also be a source of sand production. This paper presents the results of numerical simulations of borehole breakouts using 3D discrete element method to investigate the mechanism of the fracture‐like breakouts and to identify the role of far‐field stresses on the breakout dimensions. The numerical tool was first verified against analytical solutions. It was then utilized to investigate the failure mechanism and breakout geometry for drilled cubic rock samples of Castlegate sandstone subjected to different pre‐existing far‐field stresses. Results show that failure occurs in the zones of the highest concentration of tangential stress around the borehole. It is concluded that fracture‐like breakout develops as a result of a nondilatant failure mechanism consisting of localized grain debonding and repacking and grain crushing that lead to the formation of a compaction band in the minimum horizontal stress direction. In addition, it is found that the length of fracture‐like breakouts depends on both the mean stress and stress anisotropy. However, the width of the breakout is not significantly changed by the far‐field stresses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
范云  汪英珍 《岩土力学》2004,25(4):605-608
对既有及正在开发中的填土压实检测技术的原理及实测方法进行了系统的介绍、分析及论证。在此基础上,阐述了开发填土压实检测与压实机械集成系统的必要性、研制机载集成系统时所依据的力学模型、实现途径及国内外关于压实机械集成系统研究、开发的最新进展,介绍了压实机械集成系统的工作原理及工作特性,同时指出了为适应当前及未来土建工程对填土压实质量(特别是沉降量及沉降速率等方面)的基本要求,应以填土压实层的力学强度(K30、动刚度系数等)作为开发压实机械集成系统时的参考对比指标。  相似文献   

9.
砂岩的主量元素特征与盆地物源分析   总被引:5,自引:1,他引:5       下载免费PDF全文
一定的砂岩地球化学特征对应于特定的源区和构造环境,利用主量元素图解可以进行盆地物源分析。在前人大量研究的基础上,笔者选择性收集了不同构造背景的569个主量元素数据,共分为70套平均值,根据来源文献划分出克拉通内部、陆缘弧、碰撞造山带、大陆岛弧和大洋岛弧5种源区和构造环境。综合分析砂岩主量元素之间的相关性,利用整体及不同源区构造背景下元素间相关系数,得到5个主元素氧化物组合:SiO2、Al2O3 FeOT、K2O Na2O、MnO TiO2和MgO CaO;且建立了应用于5种源区判别的(Al2O3 FeOT)/(Na2O K2O)—SiO2/(MnO TiO2)/100—MgO CaO三角图解。对收集的数据进行判别方程分析得到与SiO2、CaO、MgO、FeOT、K2O、MnO、Al2O3、Na2O和TiO2相关的判别方程F1和F2,并进行F1-F2双变量物源构造环境图解判别。根据主元素对砂岩碎屑组分的反映,利用主元素摩尔含量分析石英、长石和基性岩屑矿物在砂岩中的含量,进而对源区进行约束。所建立的Qel—Fel—Lel图解既反映了主量元素对砂岩物源和构造背景的判别,也近似地表现出相应环境下砂岩的碎屑组成。  相似文献   

10.
王威  王建华 《岩土力学》2015,36(Z1):315-319
为了掌握高能级强夯作用下土体的变形特性,在LS-DYNA的框架内,采用非线性大变形显示有限元算法和“帽子”本构模型,计算了强夯作用下地基土体的变形。首先,根据现场施工的实际情况建立了有限元基本模型,并与实际的监测数据进行比较,其计算结果与测试结果基本一致,该模型能较好地反映出土体的隆起和侧向位移特点。其次,以该基本模型和夯坑的变形为考察对象进行参数分析,研究了不同能级、同能级不同动量以及夯锤与地基土间的水平摩擦力对土体变形的影响。结果表明,高能级强夯作用下夯锤与地基土间的水平力是不可忽略;夯锤与地基土之间的摩擦力,对夯坑侧向的土体位移和地表的隆起有明显的影响  相似文献   

11.
The evolution of fluid chemistry in compacting rock is controlled by coupled chemical processes and rock deformation. In order to characterize this evolution, we conducted water-rock interaction experiments using quartz aggregates at 150 °C and effective pressure of 34.5 MPa. A coupled fluid flow, chemical reaction, and creep compaction model is developed, in which both free-surface reaction and grain-contact dissolution are considered as system volume and porosity evolve.The direct experimental measurement and numerical modeling indicate that effective pressure has significant effects on pore-fluid chemistry. At the early stages of compaction, pore fluids are supersaturated with respect to bulk quartz. With increasing compaction and time, solute concentrations gradually decrease to saturated conditions. Supersaturation is caused mainly by dissolution of ultrafines and high-energy, unstable surfaces which are produced by stress concentrations at grain contacts during the very early stages of compaction. Grain-contact dissolution also contributes to the solute increase in pore fluid in the early stage of compaction, but the effect is small compared to that of ultrafines and unstable surfaces and only slight supersaturation can be produced by it. The gradual decrease in pore-fluid concentration is related to the mechanical removal of ultrafines by pore-fluid flow and the dissolution of ultrafines and unstable surfaces. It also results from the lessening of grain-contact dissolution.Pore fluids in compacting sedimentary basins of quartz sandstone are nearly saturated throughout most of diagenetic processes. Ultrafines and unstable surfaces produced by stress appear not to be the major sources of quartz cement.  相似文献   

12.
Compaction of concrete is physically a collapse of the material porous microstructure. It produces plastic strains in the material and, at the same time, an increase of its bulk modulus. This paper presents two experimental techniques aimed at obtaining the hydrostatic response of concrete and mortar. The first one is a uniaxial confined compression test which is quite simple to implement and allows to reach hydrostatic pressures of about 600 MPa. The specimen size is large enough so that concrete with aggregate sizes up to 16 mm can be tested. The second one is a true hydrostatic test performed on smaller (mortar) specimens. Test results show that the hydrostatic response of the material is elasto‐plastic with a stiffening effect on both the tangent and unloading bulk moduli. The magnitude of the irreversible volumetric strains depends on the initial porosity of the material. This porosity can be related in a first approximation to the water/cement ratio. A comparison of the hydrostatic responses obtained from the two testing techniques on the same material show that the hydrostatic response of cementitious materials cannot be uncoupled from the deviatoric response, as opposed to the standard assumption in constitutive relations for metal alloys. This feature should be taken into account in the development of constitutive relations for concrete subjected to high confinement pressures which are needed in the modelling of impact problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
张慧梅  王云飞 《岩土力学》2022,43(8):2103-2114
以红砂岩为研究对象,进行冻融循环、CT扫描及力学特性试验,采用图像处理技术结合遗传算法寻优模型实现了0、5、10、20、40 次冻融循环后 CT 扫描图像的去噪、增强、分割及三维重构处理,通过对同一对象跨尺度的损伤识别与对比研究,建立了基于细观损伤的弹性模量劣化预测公式,并从材料细观结构的物理本质诠释了冻融红砂岩宏观力学行为。结果表明:基于图像最大熵值的遗传算法能够快速精确地选取阈值进行图像分割,实现对岩石细观结构中基质和缺陷的识别;随着冻融次数增加,岩石孔隙率上升、孔隙分维下降,细观尺度上呈现出孔隙扩展、数量增多,但结构复杂程度下降的演化行为;传统方法以有效承载面积、弹性模量为度量基准定义的宏、细观损伤变量未能全面考虑损伤物理机制和材料内部结构信息,宏细观损伤演化曲线差异较大;基于2种物理机制定义细观损伤变量和考虑岩石天然损伤定义宏观损伤变量,实现了损伤的宏-细观结合。最后通过冻融循环过程中细观结构演化与宏观力学响应之间的关系,提出了弹性模量劣化预测公式,并分析冻融砂岩孔隙大小及孔隙结构形态变化在损伤过程中占据的不同主导作用,根据细观结构的物理机制解释宏观砂岩冻融破坏的力学机制。  相似文献   

14.
In many wellbore stability analyses, the ability to forecast both the occurrence and extent of plastic deformation and failure hinges upon a fundamental understanding of deformation mode and failure mechanism in the reservoir rock. This study focuses on analyzing plastic zones, localized deformations, and failures around a borehole drilled overbalanced or underbalanced through a highly porous rock formation. Based on several laboratory experiments, porous rocks are prone to deform under both shear-induced dilation and shear-enhanced compaction mechanisms depending on the stress state. The shapes of the deformation and failure patterns around the borehole are shown, depending on the initial stress state and the local stress paths. The inquiry of the local stress paths in the near-wellbore zone facilitates the understanding of the reasons for different types of failure mechanisms, including the mixed-mode and the plastic deformation structures. The modification of the 2D plane strain condition by imitating third stress in the numerical scheme helps us bring the stress paths closer to the real state of loading conditions. Our modeling reveals that the transition from isotropic to anisotropic stress state is accompanied by an increase in the deviatoric part of effective shear tensor that leads to the development of inelastic deformation, degradation, and subsequent rock failure. Particular interest is devoted to the modeling of strain localization especially in compaction mode around a wellbore and computing the amount of stress concentration at the tips of dog-eared breakouts. Stress concentration can result in a change in irreversible deformation mode from dilatancy to compaction, elucidating the formation of the shear-enhanced compaction phenomenon at the failure tips in the direction of the minimum horizontal stress.  相似文献   

15.
通过分析学者Buryakovsky等所建立的比较成熟的沉积岩压实过程的数学模型,结合国内学者提出的砂岩压实过程的各种影响因素,应用计算机编程、根据实例数据,最终得到了比较满意的模拟结果,绘制出砂岩孔隙度、渗透率、密度随埋深的变化曲线。利用多项式拟合,建立了砂岩孔隙度、渗透率、密度与埋深的多项式方程关系式,对砂岩储层物性的预测起到了良好的指导作用。  相似文献   

16.
囊谦盆地贡觉组砂岩岩石学特征与物源分析   总被引:4,自引:1,他引:4       下载免费PDF全文
在详细观察描述砂岩宏观特征的基础上,对贡觉组碎屑岩骨架组分、常量元素变化规律进行分析,研究了该地区砂岩的岩石学和物源特征,并指出囊谦盆地的沉积序列由下而上(Eg1~Eg5)具砂岩成分成熟度由差变好再变差的趋势.物源演变趋势分析揭示,沉积早期盆地北、西北部的构造运动强烈,为第二段(Eg2)沉积时期提供成熟度很低的碎屑物质...  相似文献   

17.
Compaction bands are localized failure patterns that appear in highly porous rock material under the effect of relatively high confining pressure. Being affected mainly by volumetric compression, these bands appear to be almost perpendicular to the most compressive principal stress of a stress state at the so-called “cap” of the yield surface (YS). In this study, we focus on the mechanism that leads to the onset of compaction bands by using a viscoplasticity model able to describe the post-localization response of these materials. The proposed constitutive framework is based on the overstress theory of Perzyna (1966) and the anisotropic clay plasticity model of Dafalias (1986), which provides not only the necessary “cap” of the YS, but introduces a rotational hardening (RH) mechanism, thus, accounting for the effect of fabric anisotropy. Following the analysis of Veveakis and Regenauer-Lieb (2015), we identify the compaction bands as “static” cnoidal wave formations in the medium that occur at a post-yield regime, and we study the effect of rotational and isotropic hardening on their onset. Moreover, we determine a theoretical range of confining pressures in triaxial compression tests for the compaction bands to develop. Under the assumption of coaxiality between stress and anisotropy tensors, the results show that the isotropic hardening promotes compaction localization, whereas the RH has a slightly negative effect on the onset of compaction localization.  相似文献   

18.
压密注浆的能量分析方法   总被引:4,自引:2,他引:4  
为了能够从能量的角度分析压密注浆的力学机理,并给出注浆压力的理论解,将整个注浆过程视为无限土体中的圆孔扩张问题,根据注浆过程中能耗区土体在注浆压力和静止土压力作用下的应力、应变和体变关系以及注浆扩孔过程中的能量和体变守恒原理,推导出压密注浆极限注浆压力的理论解答。计算和分析表明,理论解的计算结果与工程实际比较吻合,而且球形扩孔的注浆压力比柱形扩孔的注浆压力要小得多,初步证实了理论解的可靠性。  相似文献   

19.
This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.  相似文献   

20.
This paper focuses on the aspects of fully coupled continuum modeling of multiphase poroelasticity applied to the three-dimensional numerical simulations of the Ekofisk oil reservoir in the North Sea (56°29′–34′N, 03°10′–14′E). A systematic presentation is chosen to present the methodology behind fully coupled, continuum modeling. First, a historical review of the subsidence phenomena above an oil and gas reservoir is given. This will serve as a background against which the relevance of the present approach to compaction and subsidence modeling will be demonstrated. Following this, the governing equations for a multiphase poroelasticity model are briefly presented. Particular attention is paid to the analysis of the pore-compressibility term usually used in an uncoupled approach for characterising the host-rock deformation. A comparative numerical analysis is carried out to contrast and highlight the difference between coupled and uncoupled reservoir simulators. Finally, a finite-element numerical model of the Ekofisk field is presented and a significant result is a contour map of seabed subsidence which is in general agreement with the shape of the subsidence contours based on past bathymetric surveys. Analysis of the simulation reveals that, due to the downward movement of the overburden, oil migration occurs from the crest of the anticline in which the field is situated, towards the flank. The pore-pressure depletion in the reservoir is significantly delayed due to the replenishment of the reservoir energy via the formational compaction. Horizontal movement in the reservoir, which is neglected in traditional modeling, can be significant and comparable in magnitude to the vertical subsidence. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号