首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对我国600 m以深煤层气井采用石英砂支撑剂和活性水压裂液,难以取得商业化开发价值产气量的现状,运用FCES-100裂缝导流能力评价仪,分别测试了石英砂、陶粒和覆膜酸枣仁在不同闭合压力下的导流能力,统计了支撑剂的破碎率,并通过扫描电镜观测支撑剂的圆度和球度。实验结果表明:闭合压力小于15 MPa时,陶粒、石英砂和覆膜酸枣仁均有良好的导流能力;当闭合压力为15~25 MPa时,陶粒和覆膜酸枣仁的导流能力相对较高;当闭合压力大于25 MPa时,只有陶粒保持相对较高的导流能力。在煤层气井水力压裂设计时,可根据煤层埋深选择水力压裂支撑剂。若煤层埋深小于600 m,选用石英砂支撑剂;若煤层埋深介于600~1 000 m,采用木质支撑剂(覆膜酸枣仁)或陶粒;若煤层埋深大于1 000 m,建议用陶粒支撑剂。  相似文献   

2.
为了研究水压致裂过程中裂缝的扩展机制,在北京房山花岗岩体中开展了大型水压致裂试验。试验是在一个深 301 m的岩石新鲜完整的FR钻孔中进行的,其周围半径约40 m的范围内布置了4个120 m深的声发射观测孔。在FR孔中深度60 m至140 m的范围内选取了7段没有天然节理的部位进行了水压致裂。在所有的试验中,发现水压致裂形成的裂缝通过天然节理与AE孔连通,只在深度118.5 m进行的试验,观测到由水压致裂产生的AE事件。由声发射的震源机制解得到的P轴和T轴的方向与水压致裂应力测量的方向一致。  相似文献   

3.
王素玲  姜民政  刘合 《岩土力学》2011,32(7):2205-2210
水力压裂三维裂缝形态及延伸的预测是评价水力压裂效果的主要因素,采用了损伤力学与断裂力学相结合的方法,描述了裂缝表面岩体的力学行为,建立了裂缝面上的损伤判据与损伤演化方程。根据岩石力学与渗流力学,采用有限元方法建立了低渗透储层岩体的流固-损伤耦合方程,并采用Newton-Raphson与线性搜索相结合的方法进行求解,获得了低渗透油层水力压裂三维裂缝的动态扩展过程及最终形态,揭示其力学本质。通过算例验证了理论及计算方法的正确性。在此基础上,分析了影响裂缝扩展的主要因素,其结果可为水力压裂设计提供较为可靠和准确的预测手段,以提高油层水力压裂措施的成功率  相似文献   

4.
水劈裂过程中岩体渗透性规律及机理分析   总被引:7,自引:0,他引:7  
唐红侠  周志芳  王文远 《岩土力学》2004,25(8):1320-1322
岩体的结构及其透水性直接关系到建筑物围岩的稳定及安全。通过水力劈裂试验,可以真实地反映高水压作用下岩体的结构和渗透性的变化规律。以某水电站工程坝址区岩体所作的水力劈裂试验资料为基础,分析了在水力劈裂过程中,岩体的结构和渗透性发生的变化及其规律以及在该过程中岩体裂隙形成的机理。  相似文献   

5.
由于水力劈裂技术应用领域越来越广泛,评价裂隙劈裂效果变得越来越重要.本文对水力劈裂过程中裂隙的体积进行简单的探讨.文中给出了水力破裂过程中裂隙的概念模型,推导了该模型下求解裂隙体积的计算公式,并利用现场水力劈裂试验结果对裂隙进行估算.  相似文献   

6.
The mechanical behaviour of a rock mass is strongly affected by discontinuities such as faults and joints. In this paper, a damage mechanics theory is proposed which deals with some sets of discontinuities distributed in a rock mass, for example, joint systems. In this theory, the distributed discontinuities are characterized by a second-order symmetric tensor, called the damage tensor. By introducing the damage concept, the deformation and fracturing behaviour of the rock mass can be reated in a framework of continuum mechanics. A numerical procedure is developed in order to implement the damage mechanics model by using the finite element method. The theory and numerical analysis are applied to several laboratory tests and a practical underground opening problem. Numerical results are compared with measured data.  相似文献   

7.
张健  张国祥  王金意 《江苏地质》2018,42(1):127-130
不同影响因素对页岩水力压裂效果有不同的影响。基于三维数值计算模型介绍了水力压裂的典型过程,针对水平最小主应力、页岩的弹性模量和渗透系数对压裂的影响进行了分析。结果表明:随着水平最小主应力的增加,裂缝高度也随之增加;随着页岩的弹性模量增加,裂缝的高度随之降低;随着渗透系数的增加,裂缝高度也随之增加;随着压裂液的黏度系数提高,裂缝的高度降低。  相似文献   

8.
Rock formations in Glutenite reservoirs typically display highly variable lithology and permeability, low and complex porosity, and significant heterogeneity. It is difficult to predict the pathway of hydraulic fractures in such rock formations. To capture the complex hydraulic fractures in rock masses, a numerical code called Rock Failure Process Analysis (RFPA2D) is introduced. Based on the characteristics of a typical Glutenite reservoir in China, a series of 2D numerical simulations on the hydraulic fractures in a small-scale model are conducted. The initiation, propagation and associated stress evolution of the hydraulic fracture during the failure process, which cannot be observed in experimental tests, are numerically simulated. Based on the numerical results, the hydraulic fracturing path and features are illustrated and discussed in detail. The influence of the confining stress ratio, gravel sizes (indicated by the diameter variation), and gravel volume content (VC) on the hydraulic fracturing pattern in a conglomerate specimen are numerically investigated, and the breakdown pressure is quantified as a function of these variables. Five hydraulic fracturing modes are identified: termination, deflection, branching (bifurcation), penetration, and attraction. The propagation trajectory of the primary hydraulic fractures is determined by the maximum and minimum stress ratios, although the fracturing path on local scales is clearly influenced by the presence of gravels in the conglomerate, particularly when the gravels are relatively large. As the stress ratio increases, the fractures typically penetrate through the gravels completely rather than propagating around the gravels, and the breakdown pressure decreases with increasing stress ratio. Furthermore, the breakdown pressure is affected by the size and volume content of the gravel in the conglomerate: as the gravel size and volume content increase, the breakdown pressure increases.  相似文献   

9.
姜婷婷  张建华  黄刚 《岩土力学》2018,39(10):3677-3684
通过室内水力压裂物理模拟试验系统,对大尺寸原煤进行了水力压裂模拟试验,根据水力裂缝的空间展布形态分析了煤岩储层水力裂缝的延伸规律,揭示了网状裂缝的形成机制。结果表明:水力裂缝易在弱层理处分叉和转向,发育的层理和裂缝系统等结构面为压裂形成裂缝网络提供了前提条件。泵压曲线呈现出的频繁波动是煤岩内产生网状裂缝的一个显著特征。水力裂缝的起裂与延伸有4种基本模式,裂缝网络的形成多为这4种基本模式的组合。地应力差异系数和泵注排量对煤层水力裂缝形态有较大影响。较小的地应力差异系数更利于网状裂缝的形成;较高的压裂液排量易形成相对简单的裂缝形态,导致压裂改造效果较差。该试验方法和试验结果可为现场水力压裂参数设计和优化提供参考和依据。  相似文献   

10.
Hydraulic fracturing is an important technological advance in the extraction of natural gas and petroleum from black shales, but water injected into shale formations in the fracturing process returns with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium, Ba. It is generally assumed that high TDS comes from the mixing of surface water (injected fluid) with Na–Ca–Cl formation brines containing elevated Ba, but the mechanisms by which such mixing might occur are disputed. Here we show that Ba in water co-produced with gas could originate from water-rock reactions, with Ba levels observed in produced waters reached on a time scale relevant to hydraulic fracturing operations. We examined samples from three drill cores from the Marcellus Shale in Pennsylvania and New York to determine the possible water-rock reactions that release barium during hydraulic fracturing. Two samples, one containing microcrystalline barite (BaSO4) and one without barite, contain elevated concentrations of Ba relative to the crustal average for shale rocks. A third sample is slightly depleted in Ba relative to the crustal average. Micro-XRF measurements and SEM/EDS analysis combined with chemical sequential extraction methods reveal that a majority of the Ba in all samples (55–77 wt.%) is present in clays and can only be leached from the rock by dissolution in hydrofluoric acid. Thus, a majority of barium in our samples is relatively inaccessible to leaching under hydraulic fracturing conditions. However, the balance of Ba in the rocks is contained in phases that are potentially leachable during hydraulic fracturing (e.g., soluble salts, exchangeable sites on clays, carbonates, barite, organics).We next studied how shale reacts with water at elevated temperatures (80 °C), low Eh (−100 to −200 mV), and a range of ionic strengths (IS = 0.85–6.4) that emulate conditions prevalent at depth during hydraulic fracturing. Our experimental results indicate that the amount of Ba released from the bulk rock has a positive correlation with the ionic strength of the reacting fluid. Between 5 and 25% of the total Ba in the rock can be leached from shale under ionic strength conditions and leachate compositions typical of produced waters over a contact time of just 7 days. We suggest that reductive weathering of black shale occurs during hydraulic fracturing due to: 1) Ba2+ in clays exchanging with Na+ and Ca2+ ions that are present in high concentrations in produced water, and 2) increased solubility and dissolution kinetics of barite under high ionic strength conditions. At the low Eh conditions prevalent during hydraulic fracturing the sulfate deficient water allows Ba to be dissolved into the produced water. Based on Ba yields determined from laboratory leaching experiments of Marcellus Shale and a reasonable estimate of the water/rock mass ratio during hydraulic fracturing, we suggest that all of the Ba in produced water can be reconciled with leaching directly from the fractured rock.  相似文献   

11.
水力压裂技术改造储层已经成为非常规油气开发的重要技术手段,以井下测斜仪为代表的远场测量技术进行裂缝形态监测已经逐步应用于压后裂缝效果评价。采用不同的裂缝分析模型对压裂过程中地面和井下倾斜场进行了正演研究,验证了模型的正确性,并采用矩形张裂缝模型对影响压裂倾斜场的地层和裂缝参数进行了定量分析。研究表明,(1)地面倾斜场对于裂缝的方位角和倾角变化较为敏感,对于裂缝的尺寸及裂缝中心深度变化不敏感;(2)井下倾斜场值对于裂缝的尺寸、裂缝中心深度变化较为敏感,对于裂缝的方位角及倾角变化不敏感。研究结果可应用于储层水力压裂优化设计中。  相似文献   

12.
This communication investigates the effects fo the non-Newtonian behaviour of the fracturing fluids in the hydraulic fracturing mechanism. These effects are illustrated on the propagation of a vertical hydraulic fracture into an oil reservoir, in which the fracturing fluid is of power law and of pseudo-plastic type. The analytical solutions for evaluating the fracture lengrhs are presented for the cdases of large fluid loss and for no fiuid loss. The results obtained should be useful in the design of fracture treatments, permitting the finding of the rheological properties of the injected fluid for obtaining the desired fracture length and width.  相似文献   

13.
煤层水力压裂后支撑剂的展布形态及内部特征在很大程度上决定压裂效果的优劣.以煤矿井下巷道中揭露的煤层气井压裂裂缝内的支撑剂为研究对象,重点观察并分析支撑剂的形貌和堆积特征及其与堆积过程的关系.再以压裂裂缝典型部位获取的支撑剂为实例,描述支撑剂的形貌与堆积特征,还原支撑剂的堆积过程.结果表明:在水平缝内,距井筒距离增加,支...  相似文献   

14.
为研究水压致裂过程中水力裂缝的起裂、扩展规律及机制,研制了一种新型水压供给控制装置。该装置由水泵、增压泵、空气压缩机和导水钢垫板等组成。该装置的主要特点是易于与目前广泛存在的压力伺服机相配合,共同完成水压致裂试验,具有操作简便、效率高、成本低、组装方便等优点,使水压致裂试验更易大面积推广。利用该试验装置对类岩石试块进行了水压致裂试验,研究了不同围压下含预置裂隙试件的水力裂缝扩展规律,并与无预置裂隙试件水力裂缝扩展规律进行了对比。试验结果表明,对于含预置裂隙试块,当水平应力差较小时,预置裂隙裂尖对水力裂缝扩展影响较大,水力裂缝起裂后向预置裂隙裂尖方向扩展;随着水平应力差的增大,水力裂缝向最大水平应力方向偏转。试验证明该装置可靠性高,试验过程稳定。该研究对水压致裂试验具有促进意义。  相似文献   

15.
在地球表生系统中,化学风化作用强烈改变着岩石、水体、土壤和大气成分,是元素地球化学循环的最主要驱动力。河水溶解物质主要来源于流域内岩石化学风化,同时受到降水、人类活动的影响。文中通过对鄱阳湖流域河水样品的采集和化学成分分析,结合流域地质背景,研究了河水化学成分特征及其影响因素。结果显示,与20世纪80年代相比,本区河水Cl-、SO24-所占比例显著增高,有逐渐酸化趋势;与世界上其他主要河流相比较,该区Ca2+/Na+、Mg2+/Na+、HCO3-/Na+等比值偏低,反映了较强的蒸发岩溶解及人类活动影响特征。该区河水离子特征主要由岩石风化所控制,降水对该区河水溶解物质贡献率为10.3%,农业生产活动对鄱阳湖水溶解物质贡献率为4.9%,矿山活动对饶河丰水期、枯水期离子总量贡献率分别为8.9%、14.6%。  相似文献   

16.
Water outbursts from the floor during underground mining, and those from the surrounding rock mass of tunnels, involve the basic principle of hydraulic fracturing. Based on the hydraulic-fracturing mechanism, considered to be dependent on the coupling between seepage and damage, it is deemed that the variation of the pore-fluid pressure coefficient must be taken into account during this coupled process, in order to correctly establish the crack propagation mechanism during hydraulic fracturing. The coupled seepage-damage model is validated using numerical simulations of hydraulic fracturing around one hole and three holes; the model may also enable scientific and reasonable explanation of the dominance of hydraulic gradient on the crack propagation path in permeable rock. Finally, the water outburst from the floor at a coal mining site in Hebei Province, China, is numerically simulated, and the coupled seepage and damage mechanism during the mining-induced rock failure is clarified. The numerical simulation implies that the seepage-damage is the main mechanism for controlling the water outburst. Therefore this mechanism should be considered in the numerical simulation to understand the essence of water outburst induced in mines.  相似文献   

17.
The storage potential of subsurface geological systems makes them viable candidates for long-term disposal of significant quantities of CO2. The geo-mechanical responses of these systems as a result of injection processes as well as the protracted storage of CO2 are aspects that require sufficient understanding. A hypothetical model has been developed that conceptualises a typical well-reservoir system comprising an injection well where the fluid (CO2) is introduced and a production/abandoned well sited at a distant location. This was accomplished by adopting a numerical methodology (discrete element method), specifically designed to investigate the geo-mechanical phenomena whereby the various processes are monitored at the inter-particle scale. Fracturing events were simulated. In addition, the influence of certain operating variables such as injection flow rate and fluid pressure was studied with particular interest in the nature of occurring fractures and trend of propagation, the pattern and magnitude of pressure build-up at the well vicinity, pressure distribution between well regions and pore velocity distribution between well regions. Modelling results generally show an initiation of fracturing caused by tensile failure of the rock material at the region of fluid injection; however, fracturing caused by shear failure becomes more dominant at the later stage of injection. Furthermore, isolated fracturing events were observed to occur at the production/abandoned wells that were not propagated from the injection point. This highlights the potential of CO2 introduced through an injection well, which could be used to enhance oil/gas recovery at a distant production well. The rate and magnitude of fracture development are directly influenced by the fluid injection rate. Likewise, the magnitude of pressure build-up is greatly affected by the fluid injection rate and the distance from the point of injection. The DEM modelling technique illustrated provides an effective procedure that allows for more specific investigations of geo-mechanical mechanisms occurring at subsurface systems. The application of this methodology to the injection and storage of CO2 facilitates the understanding of the fracturing phenomenon as well as the various factors governing the process.  相似文献   

18.
磷灰石广泛存在于生物体和各种地质体中,其形成机制随物理化学条件变化而变化。本文采用Raman光谱、扫描电镜和X射线谱仪等技术研究了水热条件下,方解石向羟基磷灰石转变过程中矿物物相的变化,探讨了羟基磷灰石的形成机制。结果表明,在弱酸性环境下,方解石中的碳酸根离子先被溶液中的磷酸氢根离子交代,形成二水合磷酸氢钙(DCPD),随后部分DCPD经过脱水脱氢作用逐步转变为羟基磷灰石(HAP),还有部分磷酸氢钙溶解在水溶液中;但在碱性环境下,仅有少量的方解石转变为HAP。由此可知,磷酸盐流体中,羟基磷灰石替代方解石的生长是一种溶解-沉淀耦合的过程。低温条件下,酸性缓冲溶液条件首先生成DCPD,而后转变为HAP,碱性条件直接生成HAP。温度升高能加速方解石向HAP的转变,并且未发现DCPD的中间相。  相似文献   

19.
压裂施工曲线是反映压裂效果的重要依据,而压裂阶段储层渗透率的动态变化能够更直观地反映造缝效果。借鉴试井渗透率测试原理,建立一种压裂阶段储层动态渗透率定量评价方法,并将该方法应用到准南某区块2口煤层气井水力压裂效果评价中,获得压裂阶段储层动态渗透率曲线;同时采用G函数对压裂效果进一步评价。结果表明:动态渗透率曲线所反映压裂效果与G函数分析和基于排量、井底流压关系的评价结果吻合较好,能够反映储层内裂缝开启、延伸效果;其中,CMG-01井通过实施煤储层与围岩大规模缝网改造,压裂阶段储层渗透率最高达到2.5 μm2,造缝效果良好;而CBM-02井实施煤储层常规水力压裂,储层渗透率保持在1.8 μm2之下,显示出煤储层常规水力压裂与煤储层?围岩大规模缝网改造的差异性。动态渗透率定量评价方法弥补前期压裂改造效果缺乏量化评价的不足,为煤层气/煤系气储层水力压裂工艺的优化提供依据。   相似文献   

20.
针对沁水盆地柿庄区块煤层气开发过程中低产低效问题,基于大量实际生产资料分析,探讨地质因素和工程因素对煤层气开发效果的影响。结果认为,地应力和煤体结构是影响煤层气井压裂增产效果的关键地质因素。其中,煤层气井压裂过程中,高地应力影响裂缝延伸和支撑,水平主应力差影响裂缝延伸方向和形态;煤体结构较差的煤层在压裂中易形成煤粉,堵塞导流通道,压裂效果变差。影响压裂效果的工程因素主要包括压裂液性能、施工排量、前置液占比和井径扩大率,针对研究区地质概况,提出\  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号