首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
石岛地震台远震记录反演研究   总被引:7,自引:0,他引:7  
利用石岛地震台的远震体波记录,采用旋转相关函数法和接收函数法分别反演了台站下方介质的各向异性特征和速度结构.(1)对震中距25°~35°且记录良好的5次地震的ScS震相,采用旋转相关函数法反演了岩石圈的剪切波分裂参数.对深源地震的反演结果表明,石岛地震台快波偏振方向为N94°E,这意味着西沙附近处于近东西向微偏南的拉张或地壳下方的地幔流方向为近东西微偏南,西沙地区地壳是过渡性的,其底部的驱动力主要来自与欧亚板块运动一致的物质流.快慢波时间延迟为1.3 s,估算各向异性层厚度为100 km左右.(2)对震中距20°~60°的9次远震P波波形三分向记录,采用接收函数法反演了地壳和上地幔的S波速度结构.反演结果表明,石岛地震台下方地壳分为3层:约5 km以上有一速度梯度带,S波速度从1.5 km/s逐渐增加到3.5 km/s,其间有若干小的分层;在5~16 km的平均速度为3.8 km/s左右,其间有若干小的分层;在16.0~26.5 km的速度为3.6 km/s左右,这是一个明显的低速层;莫霍面埋深为26.5 km,莫霍面以下平均速度为4.7 km/s,也有若干小的分层,尤其是在莫霍面之下有一个明显的低速层.根据转换波到时分析和速度剖面左右摆动现象,认为反演结果中的小分层可能是不真实的,但在16.0~26.5 km的低速层的真实程度还是较高的,表明下地壳具有一定的塑性.  相似文献   

2.
In this study, we construct a 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. We use the multiple filter technique to calculate the group velocity dispersion curves of fundamental mode Rayleigh and Love waves with periods from 14 s to 120 s for earthquakes occurred around the Southeast Asia. We divide the study region (80° E–140° E, 16° S–32° N) into 3° × 3° blocks and use the constrained block inversion method to get the regionalized dispersion curve for each block. At some chosen periods, we put together laterally the regionalized group velocities from different blocks at the same period to get group velocity image maps. These maps show that there is significant heterogeneity in the group velocity of the study region. The dispersion curve of each block was then processed by surface wave inversion method to obtain the shear wave velocity structure. Finally, we put the shear wave velocity structures of all the blocks together to obtain the three-dimensional shear wave velocity structure of crust and upper mantle. The three-dimensional shear wave velocity structure shows that the shear wave velocity distribution in the crust and upper mantle of the South China Sea and its surrounding regions displays significant heterogeneity. There are significant differences among the crustal thickness, the lithospheric thickness and the shear wave velocity of the lid in upper mantle of different structure units. This study shows that the South China Sea Basin, southeast Sulu Sea Basin and Celebes Sea Basin have thinner crust. The thickness of crust in South China Sea Basin is 5–10 km; in Indochina is 25–40 km; in Peninsular Malaysia is 30–35 km; in Borneo is 30–35 km; in Palawan is 35 km; in the Philippine Islands is 30–35 km, in Sunda Shelf is 30–35 km, in Southeast China is 30–40 km, in West Philippine Basin is 5–10 km. The South China Sea Basin has a lithosphere with thickness of about 45–50 km, and the shear wave velocity of its lid is about 4.3–4.7 km/s; Indochina has a lithosphere with thickness of about 55–70 km, and the shear wave velocity of its lid is about 4.3–4.5 km/s; Borneo has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.1–4.3 km/s; the Philippine Islands has a lithosphere with thickness of about 55–60 km, and the shear wave velocity of its lid is about 4.2–4.3 km/s, West Philippine Basin has a lithosphere with thickness of about 50–55 km, and the shear wave velocity of its lid is about 4.7–4.8 km/s, Sunda Self has a lithosphere with thickness of about 55–65 km, and the shear wave velocity of its lid is about 4.3 km/s. The Red-River Fault Zone probably penetrates to a depth of at least 200 km and is plausibly the boundary between the South China Block and the Indosinia Block.  相似文献   

3.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

4.
深入研究珠江口地区海陆过渡带壳内低速层的结构和构造特征对于理解板内地震的发震机理、孕震构造及该区域的地壳结构具有重要的地质地球物理意义。利用2015年珠江口区域海陆地震联测L2-ME测线上的19个地震台站(包括陆上台站14台, 海底地震仪5台)记录到的地震数据来探明该区域低速层的结构和构造特征。在常规震相的基础上, 加入了大量的滑行波震相(Ph)进行结构模型计算, Ph震相的增加使得地壳内部10~20km范围内的射线覆盖密度有了显著提高, 从而获得了L2-ME测线下方更为精确的地壳纵波速度结构模型。结果发现, 模型中测线下方13~18km深度范围内稳定连续展布的壳内低速层被清晰成像, 其内部速度稳定在5.7~6.0 km·s-1之间, 与上下层界面速度差分别为0.5km·s-1、0.4km·s-1, 低速特征明显。该低速层厚度由陆侧的3.5km左右降至海侧的1km, 呈现出向海侧逐渐减薄的趋势, 低速层底界面起伏变化较大且具有与莫霍面相似的起伏特征。  相似文献   

5.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

6.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

7.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

8.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

9.
A digital database on the seismostratigraphy of the oceanic crust of the northeastern part of the Indian Ocean is compiled. In the first layer of the crust, the interval seismic wave velocities are 3.02 ± 0.16 km/s; in the second layer, they equal to 5.31 ± 0.27 km/s; and, in the third layer, the values are 6.46 ± 0.30 km/s. The bottom of the third seismic layer is represented by mantle rocks with an average velocity of 8.10 ± 0.16 km/s. Schemes of the distribution of the thicknesses of the second and third layers of the oceanic crust, of the total thickness of the crust, of the surface of the basement, and of the Mohorovicic discontinuity for the area considered are presented. The schemes compiled allow one to update and complement the ideas about the configuration of the major tectonic structures of the area.  相似文献   

10.
Deep seismic sounding measurements were performed in the continent-ocean transition zone of the northern Svalbard continental margin in 1985 and 1999. Data from seismic profile AWI-99200 and from additional crossing profiles were used to model the seismic crustal structure of the study area. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and hydrophone systems (OBH). 3-D tomographic inversion methods were applied to test the previous 2-D modelling results. The results are similar to the earlier 2-D modelling, supplemented by new off-line information. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep. The continent-ocean transition zone to the east is characterized by a complex seismic velocity structure according to the 2-D model and consists of several different crustal blocks. The zone is covered by deep sedimentary basins. Sediment thicknesses reach a maximum of 5 km. The Moho interface deepens to 28 km depth beneath the continental crust of Svalbard.  相似文献   

11.
大陆岩石圈在张裂和分离时的变形模式   总被引:4,自引:0,他引:4  
通过对南海南北共轭边缘地壳剖面的对比研究,发现大陆岩石圈的物理性质是分层的:上、中地壳呈脆性,下地壳表现出塑性,而岩石圈上地幔则仍呈脆性。因此,在它受张性应力场作用时,其变形和破裂分离方式也是分层进行的:上、中地壳能发生犁式断裂,产生的断块沿断面转动在地表产生一系列半地堑,并使地壳厚度减薄;如拉张应力继续作用时,上、中地壳将沿犁式断裂被拉开,从而形成上、下板块边缘,并彼此分开。下地壳则发生塑性变形,使地壳厚度减薄,并最终将其拉断。岩石圈上地幔亦可产生陡倾断裂,形成的断块沿断面转动亦使其厚度减薄,并最终沿陡倾断裂被拉断。这就是我们称之为岩石圈变形和破裂分 离时的分层变形及分层破裂分离模式。  相似文献   

12.
为研究内孤立波的地形和背景流共振机制,用地形和背景流共振机制计算了3个潜标观测的内孤立波(不同模态、不同波长)的流速和传播速度,并与观测到的内孤立波进行比较。潜标观测的第一模态内孤立波(波长分别为6.4和3.3km)都是下凹型内孤立波,2个内孤立波的传播速度约为1.4m/s、最大振幅约为48m,水平流向结构都是上层西北向、下层东南向,波长3.3km 的内孤立波波峰前后有更明显的下降流和上升流。用共振机制计算出的第一模态和第二模态纬向流速的垂向结构与观测相同,最大纬向流速出现的深度与观测一致,分别相差5和12m。用共振机制计算出的内孤立波传播速度与用 KdV 方程计算的传播速度相当,共振机制计算波速为0.66~1.21m/s,KdV 方程计算波速为0.79~1.40m/s。  相似文献   

13.
李诚  张弛  隋倜倜 《海洋学报》2016,38(5):141-149
建立了同时考虑波致雷诺应力和时均水平压强梯度影响的二阶波浪边界层数学模型,模型计算得到的浅化波浪层流边界层内瞬时流速剖面、振荡速度幅值和时均流速剖面均与水槽实验数据吻合较好,在此基础上探讨了浅化波浪边界层流速分布特性及其影响机制。随着波浪的浅化变形,边界层内时均流速剖面"底部向岸、上部离岸"的变化特征越来越明显。这是二阶对流项引起的波致雷诺应力和离岸回流引起的时均水平压强梯度共同作用的结果,在床面附近由波致雷诺应力占主导作用并趋于引起向岸流动,在上部区域由时均水平压强梯度占主导作用并趋于引起离岸流动。  相似文献   

14.
The measurements by using ADCP (500 KH) and CTD were made during August 2000 in the south (37°55''N, 120°25''E) of the Bohai Sea, where the water depth was about 16.5m. The data of horizontal velocity with sampling interval of 2 min in 7 layers were obtained. The power spec-trum analysis of these data indicates that there are very energetic infragrvity waves with a period of about 6 min. The coherence spetrum analysis and the analysis of temporal variation of shear show that these infragravity waves are mainly the free wave model (properties of edge waves), in the meantimethey possess some characteristics of internal waves, which are likely due to the distinctive marine environment in this area. It is speculated on that the instability processes (chiefly shear instability) of sheared stratified tidal flow owing to the effect of sea-floor slope in the coastal area might be the main mechanism generating these infragravity waves.  相似文献   

15.
Two long seismic refraction lines along the crest of the Iceland-Faeroe Ridge reveal a layered crust resembling the crust beneath Iceland but differing from normal continental or oceanic crust. The Moho was recognised at the south-eastern end of the lines at an apparent depth of 16–18 km. A refraction line in deeper water west of the ridge and south of Iceland indicates a thin oceanic type crust underlain by a 7.1 km/s layer which may be anomalous upper mantle.An extensive gravity survey of the ridge shows that it is in approximate isostatic equilibrium; the steep gravity gradient between the Norwegian Sea and the ridge indicates that the ridge is supported by a crust thickened to about 20 km rather than by anomalous low density rocks in the underlying upper mantle, in agreement with the seismic results. An increase in Bouguer anomaly of about 140 mgal between the centre of Iceland and the ridge is attributed to lateral variation in upper mantle density from an anomalous low value beneath Iceland to a more normal value beneath the ridge. Local gravity anomalies of medium amplitude which are characteristic of the ridge are caused by sediment troughs and by lateral variations in the upper crust beneath the sediments. A steep drop in Bouguer anomaly of about 80 mgal between the ridge and the Faeroe block is attributed partly to lateral change in crustal density and partly to slight thickening of the crust towards the Faeroe Islands; this crustal boundary may represent an anomalous type of continental margin formed when Greenland started to separate from the Faeroe Islands about 60 million years ago.We conclude that the Iceland-Faeroe Ridge formed during ocean floor spreading by an anomalous hot spot type of differentiation from the upper mantle such as is still active beneath Iceland. This suggests that the ridge may have stood some 2 km higher than at present when it was being formed in the early Tertiary, and that it has subsequently subsided as the spreading centre moved away and the underlying mantle became more normal; this interpretation is supported by recognition of a V-shaped sediment filled trough across the south-eastern end of the ridge, which may be a swamped sub-aerial valley.  相似文献   

16.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

17.
Results of the analysis and interpretation of the records of 17 ocean bottom seismometers designed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (a three-component geophone and a hydrophone), installed with an interval of 10–20 km along a profile in the transition zone from the Baltic shield to the Barents Sea basin are presented. The studies were carried out in 1995 from R/V Professor Kurentsov. An air gun with a chamber volume of 80 1 was used as the source of seismic waves with a shooting interval of 250 m. The longest range of records of deep refracted and wide-angle reflected waves (up to 300 km) was reached with the hydrophones. Two-dimensional seismic modeling allowed us to refine the earlier versions of the seismic cross section of the earth’s crust and uppermost mantle in the study region. New data confirmed that, in the central area of the Barents Sea, the “granitic-metamorphic” layer of the crust with a seismic velocity of 6.2 km/s typical of the Baltic Shield is absent. In this region, a thin consolidated crust with a seismic velocity of 6.8 km/s is covered with a thick (more than 25 km) sedimentary layer. In this layer, a local low-velocity zone probably exists, which causes a strong attenuation of the “crustal” waves.  相似文献   

18.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

19.
本文利用在菲律宾海布放的一套锚系潜标获取的长时间海流和水温观测数据,分析了吕宋海峡以东的深海海洋环境特征,着重阐释了该海域海流的全水深垂向结构及其低频变化特征。研究表明,表层(100~160 m)平均流向为西偏北,流速约为12.5 cm/s;中层(810 m)的平均流为西向,流速为2.6 cm/s;深层(1 550 m和2 560 m)的平均流速在1 cm/s以内,近底(4 040 m)的流向为较稳定的西南向,流速为2.3 cm/s。上层海流的动能比中层和深层大1~2个量级,总动能、平均动能、涡动动能均在表层最大,中层次之、深层最小,各层次涡动能均大于平均动能。中上层海流的低频变化具有极高的相似性,全年为81~85 d的周期振荡;近底层海流则不同,变化周期约为51 d。  相似文献   

20.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号