首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Galactic nuclei     
Application of standard accretion-disk theory to the central parts of galactic disks implies that galactic nuclei should pass quasi-periodically through stages of (i) gravitational instability (Starburst), (ii) non-thermal disk activity (LINER), and (iii) central-plane nuclear burning (AGN). Nuclear disks can have large mass-to-light ratios, and store large masses at high (Keplerian) rotation velocities. Aburning disk can explain all the phenomena commonly attributed to a supermassive Black Hole.  相似文献   

2.
Numerical simulations of two-component (stars + gas) self-gravitating galactic disks show that the interstellar gas can significantly affect the dynamical evolution of the disk even if its mass fraction (relative to the total galaxy mass) is as low as several percent. Aided by efficient energy dissipation, the gas becomes gravitationally unstable onlocal scale and forms massive clumps. Gravitational scattering of stars by these clumps leads to suppression of bar instability usually seen in heavy stellar disks. In this case, gas inflow towards the galactic center is driven by dynamical friction which gas clumps suffer instead of bar forcing.  相似文献   

3.
Observational evidence on the widespread occurrence of warping of the outer part of the galactic plane in many galaxies is presented and various hypotheses for its explanation are reviewed. None is found to be able to account for all the cases reported. Other phenomena considered are: (1) deviations from the galactic plane in the innermost nuclear region; (2) differences in orientation of the nucleus and disk in spiral galaxies; (3) changing ellipticity with distance from the center.After discussing the observations available, a theory has been developed which explains the phenomena mentioned as natural consequences of the non-steady nature of galactic systems due to time-dependent metric. This manifests itself in the appearance of tangential acceleration which leads necessarily to variability of the orbital plane and orbital eccentricity in dependence on the radius vector of the orbits.  相似文献   

4.
Dynamical evolution of galactic disks driven by interaction with satellite galaxies, particularly the problem of the disk warping and thickening is studied numerically. One of the main purpose of the study is to resolve the long standing problem of the origin of the disk warping. A possible cause of the warp is interaction with a satellite galaxy. In the case of the Milky Way, the LMC has been considered as the candidate. Some linear analysis have already given a positive result, but one had to wait for a fully self-consistent simulation as a proof. I have accomplished the numerical simulations with a million particles, by introducing a hybrid algorithm, SCF-TREE. Those simulations give us quantitative estimates for the Milky Way system. We have found an example in which large warp amplitudes are developed. We also found that the warp amplitudes depend on the halo distribution. Among our three models, the most massive and spherical halo is preferable for the observable warp excitation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.  相似文献   

6.
%We study the evolution of galactic disks subject to tidal torques motivated by cosmological N-body simulations using analytic and numerical techniques. We find that self-gravitating disks subject to these torques resemble observed warped galaxies. The warps develop at a local surface density of 70 M pc-2 and move out through the disk at a rate that depends on the surface density of the disk. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We analyze the R-and K s-band photometric profiles for two independent samples of edge-on galaxies. The thickness of old stellar disks is shown to be related to the relative masses of the spherical and disk components of galaxies. The radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with increasing total mass-to-light ratio of the galaxies, which reflects the relative contribution of the dark halo to the total mass, and with decreasing central deprojected disk brightness (density). Our results are in good agreement with numerical models of collisionless disks that evolved to a marginally stable equilibrium state. This suggests that, in most galaxies, the vertical stellar-velocity dispersion, on which the equilibrium-disk thickness depends, is close to a minimum value that ensures disk stability. The thinnest edge-on disks appear to be low-brightness galaxies in which the dark-halo mass far exceeds the stellar-disk mass.  相似文献   

8.
A method to fit flat rotation curves is presented, wherein the galactic density for a disk model is expressed in terms of a Dirichlet polynomial. This procedure allows us to obtain the total galactic mass and to predict the circular velocity at large galactocentric distances.Application of the method to the Galaxy, M31 and four Sc galaxies shows that a significant galactic mass is located beyond the optical radius although it is considerably smaller than the integral mass values obtained from current models with a massive corona included. Observed rotation curves and convergent total mass are obtained, thus the total mass for the Milky Way Galaxy is 5.69×1011 M .  相似文献   

9.
A new mechanism of sweeping out of dust grains beyond galactic disks both in the radial direction along the galactic plane and in the vertical, cross-disk direction is proposed. The mechanism is driven by the interaction of dust grains with the bisymmetric nonstationary magnetic field of the galaxy, whose lines are curved and corotate with the stellar spiral density wave responsible for the arms. We attribute the radial transfer of interstellar dust grains in the plane of galactic disks to the fact that charged dust grains are “glued” to magnetic field lines and are therefore pushed outward because of the rotation of magnetic field lines and their tilt with respect to the radial direction parallel to the disk plane. In addition, dust is swept out vertically in the cross-disk direction because of the drift motion in crossed magnetic and gravitational fields (both are parallel to the galactic plane). Numerical computations of the motion of dust grains in real magneto-gravitational fields with the allowance for the drag force from interstellar gas show that the time scale of dust grain transport beyond galactic disks is on the order of 1 Gyr or shorter.  相似文献   

10.
The combination of accretion disks and supersonic jets is used to model many active astrophysical objects, viz., young stars, relativistic stars, and active galactic nuclei. However, existing theories on the physical processes by which these structures transfer angular momentum and energy from disks to jets through viscous or magnetic torques are still relatively approximate. Global stationary solutions do not permit understanding the formation and stability of these structures; and global numerical simulations that include both the disk and jet physics are often limited to relatively short time scales and astrophysically out-of-range values of viscosity and resistivity parameters that are instead crucial to defining the coupling of the inflow/outflow dynamics. Along these lines we discuss self-consistent time-dependent simulations of the launching of supersonic jets by magnetized accretion disks, using high resolution numerical techniques. We shall concentrate on the effects of the disk physical parameters, and discuss under which conditions steady state solutions of the type proposed in the self-similar models of Blandford and Payne can be reached and maintained in a self-consistent nonlinear stationary state.  相似文献   

11.
The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of past star formation at large radii, as traced by observations of old and intermediate-age stars, constrains the epoch at which the highest angular momentum regions of disks were in place; first results for the M31 disk suggest this occured a significant (≳ 8 Gyr) time ago. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
Analytical solutions are obtained for gravitational and magnetic fields at given distributions of area matter density and surface currents.Numerical solutions ae obtained for a magnetized non-rotating disk, the equilibrium of which is governed by the balance of magnetic and gravitational forces. The models are shown to be unsable against short-wave perturbations. Pressure can make a small contribution (of the order of a few percent) towards stabilizng the disk against short-wave perturbations. Such disks may appear in some galactic nuclei.  相似文献   

13.
Methods are developed for analysing the gravitational properties of disks having circularly symmetric distribution of matter. It is shown how this can be conveniently done by assuming that the surface density distribution may be approximated by a polynomial in ascending powers of the distance from the centre of the configuration. A theory has been developed to determine the gravitational potential of a single disk at any point in space in terms of the coefficients of the polynomial defining the surface distribution of matter, and the potential energy of two disks of arbitrary separation and orientation due to their mutual gravitational attraction. The basic functions, required for obtaining the potential in the plane of the disk and the mutual potential energy of two coplanar disks, have been tabulated. Two overlapping coplanar disks attract just like mass-points at a certain separation,r c , of their centres. The force of attraction of disks is less than the force of attraction of mass-points having masses equal to the masses of the disks, if the separation of the centres is less thanr c , and greater if the separation is greater thanr c . For typical galaxies of equal radiiR,r c ≈R.  相似文献   

14.
The problem of determining the pattern of gas motions in the central regions of disk spiral galaxies is considered. Two fundamentally different cases—noncircular motions in the triaxial bar potential and motions in circular orbits but with orientation parameters different from those of the main disk—are shown to have similar observational manifestations in the line-of-sight velocity field of the gas. A reliable criterion is needed for the observational data to be properly interpreted. To find such a criterion, we analyze two-dimensional nonlinear hydrodynamic models of gas motions in barred disk galaxies. The gas line-of-sight velocity and surface brightness distributions in the plane of the sky are constructed for various inclinations of the galactic plane to the line of sight and bar orientation angles. We show that using models of circular motions for inclinations i>60° to analyze the velocity field can lead to the erroneous conclusions of a “tilted (polar) disk” at the galaxy center. However, it is possible to distinguish bars from tilted disks by comparing the mutual orientations of the photometric and dynamical axes. As an example, we consider the velocity field of the ionized gas in the galaxy NGC 972.  相似文献   

15.
Several mechanisms of bar mode formation in stellar galactic disks, including the Toomre swing amplification mechanism and modal approaches, are considered. Using the well-known Kuzmin-Toomre stellar disk model as an example, it has been shown through numerical simulations that the stellar bar results from the development of an unstable normal mode. The pattern speed and the spiral wave growth rate found from a numerical experiment agree well with the linear perturbation theory. The nonlinear evolution of the bar is traced. The possible role of growing transient spirals in the formation of bars is discussed.  相似文献   

16.
The chemical evolution of the Galaxy with a pulsating active nucleus is investigated. The surface densities of gas, stellar remnants, stars and chemical species such as helium and heavy elements inZ6 are calculated as functions of the position in the Galaxy and of the evolutional time of the Galaxy. According to this model, the entire luminosity of the galactic disk becomes almost constant at some 2×109 yr after the galactic formation, but the nuclear bulge, whose dimensions gradually diminishes, becomes more and more luminous with time. On the other hand, the abundance depletion of helium and heavy elements appears in the inner region of the disk after some 6×109 yr of the galactic formation. It also becomes clear that the activity for the nucleosynthesis in the nucleus is limited only in the early history of the Galaxy and has been reduced rapidly with time. Using this model, we can account for the observed phenomena such as the smooth dependence of the elemental abundance in the halo population on the distance from the galactic center, the high abundance of heavy elements in quasar spectra and etc.  相似文献   

17.
The orientations of the accretion disk of active galactic nuclei (AGN) and the stellar disk of its host galaxy are both determined by the angular momentum of their forming gas, but on very different physical environments and spatial scales. Here we show the evidence that the orientation of the stellar disk is correlated with the accretion disk by comparing the inclinations of the stellar disks of a large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ~ 30 degrees (Shen et al. 2010).  相似文献   

18.
We construct an approximation for the magnetic field of galaxies that takes into account the magnetic helicity conservation law. In our calculations, we use the fact that the galactic disk is fairly thin and, therefore, the magnetic field component perpendicular to the galactic disk can be neglected (the so-called no-z approximation). However, an averaging of the magnetic field over the entire galaxy, as was done in previous works, is not performed. Our results are compared both with the approximation that disregards the helicity flux and with the results obtained in models with helicity fluxes but without averaging. We show that, compared to the classical model, there are a number of new effects (for example, magnetic field oscillations) and, compared to the model with averaging, the behavior of the magnetic field “softens”: its stationary value is reached more slowly and the oscillation amplitude decreases. This is because the dissipative processes changing the magnetic field growth rate are taken into account in our model. In contrast to the model with averaging, here it becomes possible to construct the dependence of the magnetic field and helicity on the distance from the galactic center.  相似文献   

19.
Stellar velocity dispersion data at galactocentric distance of two disk radial scale lengths (R = 2h), available in the literature allowed us to determine the upper limits of disk local surface densities at a given R and (by extrapolation) total masses of disks proceeding from the marginal gravitational stability condition. A comparison of the obtained disk masses with the photometric estimates based on the stellar population models indicates the absence of strong dynamical overheating inmost spiral galaxies and hence the absence of significant major merging events, which were able to heat dynamically the inner parts of disks. The same conclusion is valid for some of S0 galaxies. However, a significant part of the latter possesses stellar velocity dispersion, which exceeds the threshold value needed for gravitational stability. Dynamically overheated disks occur both among paired and isolated galaxies. Disk to total mass ratios within R = 4h found for marginally stable disks in most cases lie in the range 0.5–0.8 with the absence of the clearly defined correlation of this ratio with color index or morphological type.  相似文献   

20.
While the importance of merging, accretion, and infall processesin determining galactic evolution is well established boththeoretically and observationally, details on how such processesare taking place nowadays even in our own Galaxy are stillrelatively poorly known, especially due to large remaininguncertainties on the location and origin of high velocity clouds.In this paper we focus on the possible role that galacticoutflows and gas infall may have on directly triggering starformation in the halo and in galactic disks. While compellingevidence has been accumulating in recent years suggesting thatsome level of star formation directly triggered by outflows isvery likely to exist in the halo of some galaxies, the evidencefor star formation dynamically triggered by infall is far moreelusive due to confusion with other, more efficient large-scalestar forming mechanisms operating in the galactic disk. Despite ofincreasingly realistic simulations of the gas circulation betwenthe gas and the halo and of high velocity cloud impacts ongalactic disks, the efficiency of star formation directlytriggered by such impacts remains an open question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号