首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Coral reefs support the livelihood of millions of people especially those engaged in marine fisheries activities. Coral reefs are highly vulnerable to climate change induced stresses that have led to substantial coral mortality over large spatial scales. Such climate change impacts have the potential to lead to declines in marine fish production and compromise the livelihoods of fisheries dependent communities. Yet few studies have examined social vulnerability in the context of changes specific to coral reef ecosystems. In this paper, we examine three dimensions of vulnerability (exposure, sensitivity, and adaptive capacity) of 29 coastal communities across five western Indian Ocean countries to the impacts of coral bleaching on fishery returns. A key contribution is the development of a novel, network-based approach to examining sensitivity to changes in the fishery that incorporates linkages between fishery and non-fishery occupations. We find that key sources of vulnerability differ considerably within and between the five countries. Our approach allows the visualization of how these dimensions of vulnerability differ from site to site, providing important insights into the types of nuanced policy interventions that may help to reduce vulnerability at a specific location. To complement this, we develop framework of policy actions thought to reduce different aspects of vulnerability at varying spatial and temporal scales. Although our results are specific to reef fisheries impacts from coral bleaching, this approach provides a framework for other types of threats and different social-ecological systems more broadly.  相似文献   

3.
The four species of tuna that underpin oceanic fisheries in the tropical Pacific (skipjack, yellowfin, bigeye and albacore tuna) deliver great economic and social benefits to Pacific Island countries and territories (PICTs). Domestic tuna fleets and local fish processing operations contribute 3–20 % to gross domestic product in four PICTs and licence fees from foreign fleets provide an average of 3–40 % of government revenue for seven PICTs. More than 12,000 people are employed in tuna processing facilities and on tuna fishing vessels. Fish is a cornerstone of food security for many PICTs and provides 50–90 % of dietary animal protein in rural areas. Several PICTs have plans to (1) increase the benefits they receive from oceanic fisheries by increasing the amount of tuna processed locally, and (2) allocate more tuna for the food security of their rapidly growing populations. The projected effects of climate change on the distribution of tuna in the tropical Pacific Ocean, due to increases in sea surface temperature, changes in velocity of major currents and decreases in nutrient supply to the photic zone from greater stratification, are likely to affect these plans. PICTs in the east of the region with a high dependence on licence fees for government revenue are expected to receive more revenue as tuna catches increase in their exclusive economic zones. On the other hand, countries in the west may encounter problems securing enough fish for their canneries as tuna are redistributed progressively to the east. Changes in the distribution of tuna will also affect the proportions of national tuna catches required for food security. We present priority adaptations to reduce the threats to oceanic fisheries posed by climate change and to capitalise on opportunities.  相似文献   

4.
Climate and current anthropogenic impacts on fisheries   总被引:1,自引:1,他引:0  
Human impacts on marine fisheries go back many centuries or even thousands of years in some coastal areas. Full global exploitation of the most productive fish stocks probably occurred around 1990. Many stocks have been overexploited and the assessment and management required to rein this in and to combat other human pressures, such as pollution, has been slow to mature, but is showing positive trends. The need to protect marine ecosystems for their intrinsic value and for the services they provide has also been recognised and is being embodied in legislation and turned into operational tools. As with terrestrial systems, it will not be easy to find acceptable balances between food production and conservation objectives. Climate change imposes a new set of pressures on marine ecosystems; increasing temperature, reduced salinity in some enclosed seas and coastal areas, changing windfields and seasonality, acidification, deoxygenation and rising sea level will all affect the productivity and distribution of marine life. We can detect some of the consequences already but prediction is very difficult for a variety of reasons. In spite of these difficulties it is possible to map out robust guidance on the kind of research that will help us to adapt and on the development of practices and management that will insure against future change.  相似文献   

5.
We investigate the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model. The decadal predictions are performed in both retrospective (hindcast) and forecast modes. Specifically, the full set of prediction experiments consists of 3-member ensembles of 30-year simulations, starting at 5-year intervals from 1960 to 2005, using historical radiative forcing conditions for the 1960–2005 period, followed by RCP4.5 scenario settings for the 2006–2035 period. The ocean initial states are provided by ocean reanalyses differing by assimilation methods and assimilated data, but obtained with the same ocean model. The use of alternative ocean reanalyses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system appears to be driven to large extent by trends in the radiative forcing. However, after detrending, a residual skill over specific regions of the ocean emerges in the near-term. Specifically, natural fluctuations in the North Atlantic sea-surface temperature (SST) associated with large-scale multi-decadal variability modes are predictable in the 2–5 year range. This is consistent with significant predictive skill found in the Atlantic meridional overturning circulation over a similar timescale. The dependency of forecast skill on ocean initialization is analysed, revealing a strong impact of details of ocean data assimilation products on the system predictive skill. This points to the need of reducing the large uncertainties that currently affect global ocean reanalyses, in the perspective of providing reliable near-term climate predictions.  相似文献   

6.
Several lines of evidence show that climatic variation and global warming can have a major effect on fisheries production and replenishment. To prevent overfishing and rebuild overfished stocks under changing and uncertain environmental conditions, new research partnerships between fisheries scientists and climate change experts are required. The International Workshop on Climate and Oceanic Fisheries held in Rarotonga, Cook Islands, 3–5 October 2011, brought representatives from these disciplines together to consider the effects of climate variability and change on oceanic fisheries, the tools and strategies required for identifying potential impacts on oceanic fisheries, and the priority adaptations for sustaining future harvests, especially in the Pacific Ocean. Recommendations made by the workshop included (1) development and implementation of sustainable management measures for fisheries; (2) long-term commitment to monitoring necessary to assess stock status and to conduct integrated ecosystem assessments; (3) process oriented research to evaluate the potential of marine species for adaptation to a changing ocean environment; (4) provision of improved national meteorological and hydrological services to fisheries agencies, enterprises and communities; (5) continuing communication of potential impacts and adaptation strategies to stakeholders to reduce the threats to oceanic fisheries and capitalise on opportunities; and (6) continued collaborative efforts between meteorological, oceanographic, biological and fisheries researchers and management agencies to better monitor and understand the impacts of short-term variability and longer-term change on oceanic fisheries.  相似文献   

7.
Regions and countries manage and sustain oceanic resources and services with varying degrees of success. Our empirical analysis discusses the extent to which this variation can be explained by common-pool resource (CPR) characteristics, controlling for institutional quality, island status, the existence of marine-protected areas, and the ratification of marine environmental agreements. Using data from the Ocean Health Index (OHI), we confirm that the problems related to CPRs are not restricted to fisheries. Other oceanic services and assets, including the provision of oceanic natural products, habitat health, and species richness, also decline with the number of neighboring countries. By contrast, the aspects of ocean health-like sustainable tourism, the preservation of iconic species, or the mitigation of trash pollution benefit from neighborhood stress. Overall, there is little evidence that economic development (expressed in per capita gross domestic product [GDP] and used as a proxy for institutional quality) contributes to sustaining oceanic resources. In general, the OHI appears to capture the established characteristics of various oceanic resources and services very well. Accordingly, it represents an important data source for improving our understanding of the variation in oceanic resources and services, an indispensable factor in developing and achieving sustainable development strategies for the ocean.  相似文献   

8.
Scales of climate impacts   总被引:4,自引:0,他引:4  
Climates, ecosystems, and societies interact over a tremendous range of temporal and spatial scales. Scholarly work on climate impacts has tended to emphasize different questions, variables, and modes of explanation depending on the primary scale of interest. Much of the current debate on cause and effect, vulnerability, marginality, and the like stems from uncritical or unconscious efforts to transfer experience, conclusions, and insights across scales. This paper sketches a perspective from which the relative temporal and spatial dimensions of climatic, ecological, and social processes can be more clearly perceived, and their potential interactions more critically evaluated. Quantitative estimates of a variety of characteristic scales are derived and compared, leading to specific recommendations for the design of climate impact studies.A longer version of this paper (Clark, 1985), with complete documentation of data sources, was presented at the Social Science Research Council's Conference on Forecasting in the Social and Natural Sciences (Boulder, Colorado, June 10–13, 1984).  相似文献   

9.
Gao2008、Crowley2013和Sigl2015火山强迫资料,均基于极地冰芯重建.由于每组重建使用的冰芯数据和分析方法等不同,因此结果存在差异,从而影响气候模式应用.文中详细梳理三组火山强迫资料在原始冰芯数据、信号识别提取和沉积通量计算等方面的差异;介绍重建中涉及的对未知火山事件发生季节、纬度及从极地硫酸盐沉积...  相似文献   

10.
The atmospheric circulation patterns in the Southern Hemisphere have had a significant impact on the climate of the Antarctic and there is much evidence that these circulation patterns have changed in the recent past. This change is thought to have contributed to the warming trend observed at the Antarctic Peninsula over the last 50 years—one of the largest trends observed in this period on the planet. The trends associated with the continental Antarctic climate are less clear but are likely to be impacted less directly by atmospheric circulation changes. The circulation changes can be put into the context of longer timescales by considering atmospheric circulation reconstructions that have been performed using data from Antarctic ice cores. In this review paper we look at the main body of work examining: Antarctic climate trends; the understanding and impact of atmospheric circulation of the mid- to high-latitudes of the Southern Hemisphere; and the usefulness and reliability of atmospheric circulation reconstructions from Antarctic ice core data. Finally, beyond several of the more quantitative reconstructions, it is deemed that an assessment of their consistency is not possible due to the variety of circulation characteristics that the various reconstructions consider.  相似文献   

11.
Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.  相似文献   

12.
While previous research has documented marine fish and invertebrates shifting poleward in response to warming climates, less is known about the response of fisheries to these changes. By examining fisheries in the northeastern United States over the last four decades of warming temperatures, we show that northward shifts in species distributions were matched by corresponding northward shifts in fisheries. The proportion of warm-water species caught in most states also increased through time. Most importantly, however, fisheries shifted only 10–30 % as much as their target species, and evidence suggested that economic and regulatory constraints played important roles in creating these lags. These lags may lead to overfishing and population declines if not accounted for in fisheries management and climate adaptation. In coupled natural-human systems such as fisheries, human actions play important roles in determining the sustainability of the system and, therefore, future conservation and climate mitigation planning will need to consider not only biophysical changes, but also human responses to these changes and the feedbacks that these responses have on ecosystems.  相似文献   

13.
Volcanic and solar impacts on climate since 1700   总被引:6,自引:0,他引:6  
 Numerical experiments have been carried out with a two-dimensional sector averaged global climate model with a detailed radiative scheme in order to assess the possible impact of solar and volcanic activities on the Earth’s surface temperature at the secular time scale from 1700 to 1992. Our results indicate that while the general trend of the observed temperature variations on the century time scale can be generated in response to both the solar and volcanic forcings, these are clearly not sufficient to explain the observed 20th century warming and more specifically the warming trend which started at the beginning of the 1970s. However, the lack of volcanism during the period 1925–1960 could account, at least partly, for the observed warming trend in this period. Finally, while Schlesinger and Ramankutty (1994) assumed that random forcing could not be a possible source of the 65–70 year oscillation they detected in the global climate system, our results indicate that the volcanic forcing over the past 150 years could have introduced an oscillation of around 70 years in the Earth’s surface temperature. Received: 25 August 1997/Accepted: 27 November 1998  相似文献   

14.
15.
16.
Methods are proposed to estimate the monthly relative humidity and wet bulb temperature based on observations from a dynamical downscaling coupled general circulation model with a regional climate model (RCM) for a quantitative assessment of climate change impacts. The water vapor pressure estimation model developed was a regression model with a monthly saturated water vapor pressure that used minimum air temperature as a variable. The monthly minimum air temperature correction model for RCM bias was developed by stepwise multiple regression analysis using the difference in monthly minimum air temperatures between observations and RCM output as a dependent variable and geographic factors as independent variables. The wet bulb temperature was estimated using the estimated water vapor pressure, air temperature, and atmospheric pressure at ground level both corrected for RCM bias. Root mean square errors of the data decreased considerably in August.  相似文献   

17.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

18.
Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.  相似文献   

19.
The new interactive ensemble modeling strategy is used to diagnose how noise due to internal atmospheric dynamics impacts the forced climate response during the twentieth century (i.e., 1870?C1999). The interactive ensemble uses multiple realizations of the atmospheric component model coupled to a single realization of the land, ocean and ice component models in order to reduce the noise due to internal atmospheric dynamics in the flux exchange at the interface of the component models. A control ensemble of so-called climate of the twentieth century simulations of the Community Climate Simulation Model version 3 (CCSM3) are compared with a similar simulation with the interactive ensemble version of CCSM3. Despite substantial differences in the overall mean climate, the global mean trends in surface temperature, 500?mb geopotential and precipitation are largely indistinguishable between the control ensemble and the interactive ensemble. Large differences in the forced response; however, are detected particularly in the surface temperature of the North Atlantic. Associated with the forced North Atlantic surface temperature differences are local differences in the forced precipitation and a substantial remote rainfall response in the deep tropical Pacific. We also introduce a simple variance analysis to separately compare the variance due to noise and the forced response. We find that the noise variance is decreased when external forcing is included. In terms of the forced variance, we find that the interactive ensemble increases this variance relative to the control.  相似文献   

20.
This study aims at exploring potential impacts of land-use vegetation change (LUC) on regional climate variability and extremes. Results from a pair of Australian Bureau of Meteorology Research Centre (BMRC) climate model 54-yr (1949-2002) integrations have been analysed. In the model experiments, two vegetation datasets are used, with one representing current vegetation coverage in China and the other approximating its potential coverage without human intervention. The model results show potential impacts ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号