首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

2.
低轨重力卫星轨道的精确确定是获得精密地球重力场模型的前提, 而精密重力场模型又是获得高精度定轨结果的保证.本文简述了利用卫星重力方法恢复地球重力场及简化动力学方法确定低轨卫星轨道的数学模型,并简单分析和比较现有的几种重力场模型.用CHAMP实测数据,结合现有的重力场模型,系统分析、研究了不同阶次、不同重力场模型对低轨卫星定轨精度的影响;研究了不同间隔的随机速度脉冲在简化动力学方法中对模型误差的吸收、调节作用.计算结果表明,在定轨中,选择合理阶数的、较精确的重力场模型及合理间隔的随机脉冲参数,不但可以提高计算效率,更能提高定轨精度.  相似文献   

3.
高精度的卫星轨道确定是卫星应用的基础和保证,本文以新一代DORIS接收机观测数据DORIS 3.0的相位观测数据为基础,研究了相位观测数据与传统的DORIS距离变化率数据的转换方法,并以JASON-2卫星为例,基于卫星动力学定轨原理,分析了不同数据类型、不同定轨方案得到的卫星轨道精度.结果表明,1)利用3天弧段的DORIS 2.2格式距离变化率数据和数据文件提供的相位中心偏差改正,或者采用模型对天线相位中心偏差进行改正并同时对地面测站进行偏心改正时,两种方案得到的轨道三维位置精度基本一致,均优于8.7cm,说明新一代DORIS接收机相位中心稳定,变化较小,采用模型进行偏差修正完全能够满足定轨精度要求.2)采用3.0格式的DORIS数据以及天线相位中心偏差修正模型和地面测站偏心改正模型时,得到的卫星定轨精度略有降低,大约为9.2cm;SLR校核残差约为6.5cm(均方根误差).3)采用2.2和3.0两种格式的DORIS数据,利用不同的定轨方案对JASON-2卫星进行精密定轨,均可以达到2cm左右的径向定轨精度,不同的定轨方案对径向定轨精度的影响可忽略不计.因此,对于最关心卫星径向定轨精度的海洋测高卫星而言,采用本文的数据格式转换方法和定轨方案,完全可以满足其定轨任务需求.  相似文献   

4.
合理的随机模型是确定高精度卫星轨道的前提条件,目前广泛应用于地面观测数据的随机模型主要有高度角模型和载噪比模型,本文通过对GRACE卫星实测数据的分析表明上述随机模型均不能很好地描述GRACE卫星星载GPS观测值的噪声特点,为此,文中提出了扩展的高度角模型和扩展的载噪比随机模型.利用自主研发的精密定轨软件,分别采用高度角模型、扩展的高度角模型、载噪比模型、扩展的载噪比模型对GRACE卫星进行了轨道确定.数值结果表明:(1)高度角模型的运动学轨道径向精度为3.4 cm,扩展的高度角模型的为3.3 cm;(2)载噪比模型的运动学轨道径向精度为4.9 cm,扩展的载噪比模型的则为3.4 cm,精度提高了1.5 cm.经比较分析,文中提出的扩展的高度角模型和载噪比模型能更好地描述GRACE卫星观测值噪声特点,并能取得更高的卫星定轨精度.  相似文献   

5.
固定非差整数模糊度的PPP快速精密定位定轨   总被引:2,自引:0,他引:2       下载免费PDF全文
从GPS基本观测模型出发,给出并推导了分离相位小数偏差求解非差整数模糊度的精密单点定位数学模型和算法.利用少量IGS跟踪站组成服务端观测网计算未检校的相位小数偏差改正信息,用于改正用户端接收机的相位观测值,实现了固定非差整数模糊度的快速精密单点定位与定轨.试验结果表明: 利用30 min的地面动态或静态观测数据进行精密单点定位,非差模糊度固定成整数后,其定位结果较PPP浮点解有明显改善,水平方向提高了近一个数量级,可达到1 cm甚至毫米级的精度;高程方向与对流层延迟解算精度也改善了20%~60%.与浮点解相比,固定解能显著改善PPP的定轨精度,仅用15 min的短弧段观测数据,切向与法向的定轨精度可达到1 cm左右;径向方向为3~5 cm左右,较浮点解定轨精度改善了50%~70%.因此,固定非差整数模糊度后的PPP能够满足毫米至厘米级的快速精密定位和定轨的要求,这在GPS(准)实时应用与服务中具有很好的应用前景.  相似文献   

6.
新一代GRACE重力卫星反演地球重力场的预期精度   总被引:4,自引:2,他引:2       下载免费PDF全文
基于低低卫卫跟踪模式,本文主要探讨利用动力学法融合精密轨道数据和星间测距或距离变率数据求解地球重力场的基本原理与方法,该方法既可对两颗低低跟踪卫星的初始状态误差进行有效校正,也可充分利用低轨卫星轨道所包含的低频重力场信息.为探讨适合我国国情的低低跟踪模式下的重力卫星指标,本文以不同星载设备精度指标的组合进行模拟计算,模拟结果显示:(1)把GRACE卫星的星间距离变率指标提高一个量级,其余指标保持与GRACE卫星设计指标一致时,可使地球重力场的精度获得同量级的提高;(2)若星间距离变率为1.0×10-8 m·s-1,轨道高度为300 km,加速度计精度为3.0×10-10 m·s-2,轨道精度为0.03 m, 星间距离100 km,与利用GRACE的设计指标反演出的重力场精度相比,可提高约121倍,并建议我国未来低低跟踪重力卫星计划参考此指标.  相似文献   

7.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场.第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程.第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数.如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加.因此,6点RIRM公式是提高下一代地球重力场精度的较优选择.第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性.随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高.第四,基于6点RIRM公式,通过30天观测数据和采样间隔5s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m.研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE FollowOn地球重力场精度较GRACE至少高10倍.  相似文献   

8.
基于GRACE卫星重力数据确定地球重力场模型WHU-GM-05   总被引:14,自引:3,他引:11       下载免费PDF全文
基于卫星轨道运动的能量积分方程,可导出利用卫星跟踪卫星数据求解地球重力场的实用公式.本文在Jekeli给出的公式基础上导出了基于能量守恒方程利用两颗低-低卫星跟踪的扰动位差求解重力位系数的严密关系式.基于两颗GRACE卫星的观测数据,采用本文导出的严密能量积分方法求解得到120阶的GRACE地球重力场模型,命名为WHU-GM-05;将WHU-GM-05模型与国际上同类重力场模型EIGEN-GRACE系列和GGM02S分别在阶方差和大地水准面高等方面作了比较,并与美国和中国的部分地区GPS水准观测值进行了精度分析.结果表明基于本文推导的严密双星能量守恒方程得到的WHU-GM-05重力场模型精度与国际上同类重力场模型的精度相当.  相似文献   

9.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场. 第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程. 第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数. 如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加. 因此,6点RIRM公式是提高下一代地球重力场精度的较优选择. 第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性. 随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高. 第四,基于6点RIRM公式,通过30天观测数据和采样间隔5 s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m. 研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE Follow-On地球重力场精度较GRACE至少高10倍.  相似文献   

10.
卫星精密定轨与重力场建模的同解法   总被引:1,自引:1,他引:0       下载免费PDF全文
现代卫星跟踪卫星重力测量技术显著改善了地球重力场模型的中长波段信号,并拓展了重力场模型在相关科学研究中的应用.同解法作为卫星重力观测数据的主要处理手段之一,国内一直没有实质突破.本文从基本模型和关键技术的分析出发,剖析了同解法的特点,特别是在建立同解法与几何法(运动学)定轨、一般动力学方法关系的基础上,给出了一种同解法的实现路线.在已有的精细数据预处理和并行计算研究基础上,结合GRACE卫星的实测飞行数据,在国内首次获得了真实卫星任务数据条件下的同解法结果,并进行了动力法轨道的外部质量检核、卫星非保守力分析、重力场模型的GPS水准检验等.利用卫星激光测距数据检验,卫星精密轨道的径向精度优于2cm,同时建立了质量可靠的卫星重力场模型,充分展示了同解法的优点.数值结果及其分析表明,本文所提的同解法实施方案合理可行,已经掌握了实现同解法的关键技术,获得了从仿真研究到实际飞行数据处理的新进展.最后,本文对同解法今后的发展思路,以及如何进一步挖掘同解法的潜力,提出了见解和今后的工作方向.  相似文献   

11.
On precise orbit determination of HY-2 with space geodetic techniques   总被引:1,自引:1,他引:0  
As the first radar altimetric satellite of China, HY-2 requires the precise orbit determination with a higher accuracy than that of other satellites. In order to achieve the designed radial orbit with the accuracy better than 10 cm for HY-2, the methods of precise orbit determination for HY-2 with the centimeter-level accuracy based on space geodetic techniques (DORIS, SLR, and satellite-borne GPS) are studied in this paper. Perturbations on HY-2 orbit are analyzed, in particular those due to the non-spherical gravitation of the earth, ocean tide, solid earth tide, solar and earth radiation, and atmospheric drag. Space geodetic data of HY-2 are simulated with the designed HY-2 orbit parameters based on the orbit dynamics theory to optimize the approaches and strategies of precise orbit determination of HY-2 with the dynamic and reduced-dynamic methods, respectively. Different methods based on different techniques are analyzed and compared. The experiment results show that the nonspherical perturbation modeled by GGM02C causes a maximum perturbation, and errors caused by the imperfect modeling of atmospheric drag have an increasing trend on T direction, but errors are relatively stable on the other two directions; besides, the methods with three space geodetic techniques achieve the radial orbit with the precision better than 10 cm.  相似文献   

12.
The HY-2A satellite is the first ocean dynamic environment monitoring satellite of China. Centimeter-level radial accuracy is a fundamental requirement for its scientific research and applications. To achieve this goal, we designed the strategies of precise orbit determination (POD) in detail. To achieve the relative optimal orbit for HY-2A, we carried out POD using DORIS-only, SLR-only, and DORIS + SLR tracking data, respectively. POD tests demonstrated that the consistency level of DORIS-only and SLR-only orbits with respect to the CNES orbits were about 1.81 cm and 3.34 cm in radial direction in the dynamic sense, respectively. We designed 6 cases of different weight combinations for DORIS and SLR data, and found that the optimal relative weight group was 0.2 mm/s for DORIS and 15.0 cm for SLR, and RMS of orbit differences with respect to the CNES orbits in radial direction and three-dimensional (3D) were 1.37 cm and 5.87 cm, respectively. These tests indicated that the relative radial and 3D accuracies computed using DORIS + SLR data with the optimal relative weight set were obviously higher than those computed using DORIS-only and SLR-only data, and satisfied the requirement of designed precision. The POD for HY-2A will provide the invaluable experience for the following HY-2B, HY-2C, and HY-2D satellites.  相似文献   

13.
A global gravity field model TUG-CHAMP04, derived from CHAMP (CHAllenging Minisatellite Payload) satellite-to-satellite GPS tracking observations in the high-low mode (SST-hl) in combination with CHAMP accelerometry, is presented and described in detail in this paper. For this purpose the energy integral approach was applied to precise kinematic orbits and accelerometer data. The advantage of these kinds of orbits is that they are derived from purely geometrical information, hence no external gravity field information is used for the determination of the positions. The disadvantage of precise kinematic orbit information is, that no velocities are delivered and hence a procedure has to be elaborated to deduce the velocities from kinematic positions. This work is done in preparation for ESA’s GOCE (Gravity field and steady state Ocean Circulation Explorer) satellite mission (scheduled launch November 2006), aiming at a high precision and high-resolution gravity field model on a global scale. This paper concentrates on the CHAMP data processing, where, in contrast to the usual standard method (processing in the Earth fixed frame), an approach in the inertial frame is chosen. Focus is taken on the data preprocessing of both accelerometer and orbit data, emphasising on the correct treatment of data-gaps and outlier detection. Furthermore an arc-wise weighting strategy is introduced and the advantages/disadvantages of this approach are discussed. Finally, the TUG-CHAMP04 model, calculated from one year of CHAMP data is compared with the official CHAMP gravity field model EIGEN-3p and terrestrial data (GPS levelling data).  相似文献   

14.
Tang  Geshi  Li  Xie  Cao  Jianfeng  Liu  Shushi  Chen  Guangming  Man  Haijun  Zhang  Xiaomin  Shi  Sihan  Sun  Ji  Li  Yongping  Calabia  Andres 《中国科学:地球科学(英文版)》2020,63(2):257-266
On September 20 th, 2015, twenty satellites were successfully deployed into a near-polar circular orbit at 520 km altitude by the Chinese CZ-6 test rocket, which was launched from the Tai Yuan Satellite Launch Center. Among these satellites, a set of 4 Cube Sats conform the atmospheric density detection and precise orbit determination(APOD) mission, which is projected for atmospheric density estimation from in-situ detection and precise orbit products. The APOD satellites are manufactured by China Spacesat Co. Ltd. and the payload instruments include an atmospheric density detector(ADD), a dual-frequency dualmode global navigation satellite system(GNSS) receiver(GPS and Beidou), a satellite laser ranging(SLR) reflector, and an S/Xband very long baseline interferometry(VLBI) beacon. In this paper, we compare the GNSS precise orbit products with colocated SLR observations, and the 3 D orbit accuracy shows better than 10 cm RMS. These results reveal the great potential of the onboard micro-electro-mechanical system(MEMS) GNSS receiver. After calibrating ADD density estimates with precise orbit products, the accuracy of our density products can reach about 10% with respect to the background density. Density estimates from APOD are of a great importance for scientific studies on upper atmosphere variations and useful for model data assimilation.  相似文献   

15.
卫星激光测距(SLR)技术作为卫星精密定轨手段和轨道检核重要方法,激光反射器已经成为重力卫星和测高卫星等低轨卫星的基本载荷.经典的SLR台站坐标是使用动力学方法计算的,本文根据多颗低轨卫星(LEO)多历元的激光观测数据,采用几何方法开展地面SLR测站坐标计算.通过组建低轨卫星群实现对全球激光站的动态观测,为了合理配置不同低轨卫星间观测值权重,削弱低轨卫星群可能存在的系统性偏差,提出采用方差分量估计组合的最小二乘法进行解算.实测结果显示,解算出SLR台站坐标框架解与SLRF2014差异平均值在25.1 mm,外符合精度达到1~2 cm.该方法避免了复杂动力学模型,SLR台站坐标的几何计算方法既可以作为激光测站框架解算手段之一,同时将LEO卫星群作为空间并址站实现不同技术地球参考框架间的融合.  相似文献   

16.
The so-called highly reduced-dynamic (HRD) orbit determination strategy and its use for the determination of the Earth’s gravitational field are analyzed. We discuss the functional model for the generation of HRD orbits, which are a compromise of the two extreme cases of dynamic and purely geometrically determined kinematic orbits. For gravity field recovery the energy integral approach is applied, which is based on the law of energy conservation in a closed system. The potential of HRD orbits for gravity field determination is studied in the frame of a simulated test environment based on a realistic GOCE orbit configuration. The results are analyzed, assessed, and compared with the respective reference solutions based on a kinematic orbit scenario. The main advantage of HRD orbits is the fact that they contain orbit velocity information, thus avoiding numerical differentiation on the orbit positions. The error characteristics are usually much smoother, and the computation of gravity field solutions is more efficient, because less densely sampled orbit information is sufficient. On the other hand, the main drawback of HRD orbits is that they contain external gravity field information, and thus yield the danger to obtain gravity field results which are biased towards this prior information.  相似文献   

17.
Satellite laser ranging (SLR) has proven avery efficient method for contributingto the tracking of altimetric satellites anddetermining accurately their orbitalthough hampered by the non-worldwide coverageand the meteorologicalconditions. Indeed, in some cases it is the onlymethod available to determinethe satellite orbit (e.g., the orbits of the ERS-1and Geosat-Follow-On missions).Moreover, any operational and non-weather dependenttechniques, like GPS,DORIS, PRARE, can exhibit systematic errors inpositioning and orbitography. Acomparison with SLR results allows to evidence sucherrors and vice versa. Fordoing that, two different approaches for determiningprecise orbits can beconsidered: one based on global orbit determination,the other on a short-arctechnique used to locally improve a global orbitdetermined by another trackingtechniques, such as DORIS or GPS. We can thusvalidate a global orbit andachieve orbit quality control to a level of2 to 3 centimeters at present and expectto achieve a level of 1 to 2 centimeters inthe near future. Errors induced bystation coordinates or by the gravity field(geographically correlated errors, forexample) can be estimated from SLR tracking data.Colocation experiments withdifferent techniques in the same geodetic siteplay also a key role to ensure preciserelationships between the geodetic referenceframes linked to each technique. Inparticular, the role of the SLR technique is tostrengthen the vertical component(including velocity) of the positioning, whichis crucial for altimetry missions.The role of SLR data in the modelling of the firstterms of the gravity field has finally to be emphasized,which is of primary importance in orbitography,whatever the tracking technique used.Another application of SLR technology is thesatellite altimeter calibration. Examples of past calibrationand future experiments are given, including theaccuracy we can expect from the Jason-1 and EnviSatspace oceanography missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号