首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磁组构成分析是利用岩石磁化率各向异性研究构造变形特征及其应力作用方式和方向的方法,研究表明,中甲地区岩石各向异性度P值比较小,反映本区总体变形较弱,但变质石英砂岩相对变形较强。变质石英砂岩磁面理发育,磁线理较弱,显示压扁变形,变形主压应力方向是NW-SE向。火山(碎屑)岩具有明显的磁线理,反映流纹构造特征;最大磁化率轴方向屡示本区火山岩流体构造为NW-SE向。矿化蚀变岩和矿石的磁各向异性度P值明显  相似文献   

2.
In the Mona Complex of Llŷn, a narrow, steep belt of fine grained schists known as the Penmynydd Zone of Metamorphism lies between a deformed melange (Gwna Group) and a unit of gneisses and plutonic rocks (Sarn Complex). Rocks within and adjacent to this Zone are characterized by mylonitic textures. The highest grade Penmynydd rocks on Llŷn reached greenschist and, locally, glaucophanitic greenschist fades conditions. The schist belt is interpreted as a major shear zone formed as the Sarn Complex moved up against the lower grade Gwna Group. A previous interpretation of the schists (Shackleton 1956) as being the result of a prograde metamorphism from sub-greenschist facies Gwna Group to anatectic granitic and gneissic rocks of the Sarn Complex is rejected.  相似文献   

3.
The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non-migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagioclase, orthopyroxene and matrix in the igneous rocks. Plagioclase phenocrysts were progressively deformed and recrystallized, first into core and mantle structures, and ultimately into plagioclase-rich layers or ribbons. Garnet preferentially developed in the outer portions of recrystallized mantles, and, with further deformation, produced garnet-rich sub-layers within the plagioclase-rich gneissic domains. Orthopyroxene was replaced by clinopyroxene and garnet (and hornblende if sufficient water was present), which were, in turn, drawn into layers with new garnet growth along the boundaries. The igneous matrix evolved through a number of transient fabric stages involving S-C fabrics, S-C-C' fabrics, and ultramylonitic domains. In addition, quartz veins were emplaced and subsequently deformed into quartz-rich gneissic layers. Moderate to highly strained samples display extreme mineralogical (compositional) segregation, yet most domains can be directly related to the original igneous precursors. The Mary granite was emplaced at approximately 900 °C and 1.0 GPa and was metamorphosed at approximately 750 °C and 1.0 GPa. The igneous rocks crystallized in the medium-pressure granulite field (Opx–Pl) but were metamorphosed on cooling into the high-pressure (Grt–Cpx–Pl) granulite field. The compositional segregation resulted from a dynamic, mutually reinforcing interaction between deformation, metamorphic and igneous processes in the deep crust. The production of gneissic texture by processes such as these may be the inevitable result of isobaric cooling of igneous rocks within a tectonically active deep crust.  相似文献   

4.
The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.  相似文献   

5.
东天山平顶山巨眼球状片麻状花岗岩特征及成因   总被引:7,自引:4,他引:7  
本文以东天山平顶山岩体为例,探讨中天山晋宁旋回晚期巨眼球状片麻状花岗岩的特征及其形成机制。野外地质关系、岩相学、岩石化学、稀土元素、微量元素和同位素研究表明,平顶山岩体是岛弧钙碱性火山-沉积岩系经原地改造的产物,其Rb-Sr等时线年龄为927 Ma。花岗岩形成作用的动力、热力来源可能与碰撞后天山岩石圈的拆沉有关。拆沉导致的底侵和内侵引发了地壳岩石的韧性剪切,剪切后的岩石有利于部分熔融、熔体-流体运移和化学反应,而熔体和流体的作用反过来又会促进韧性剪切,并将较浅层次的变形变质岩石改造为片麻状花岗岩。平顶山岩体的成岩作用体现了部分熔融、韧性剪切和流体作用的相互反馈,也是这些作用的共同产物。这种原地片麻状花岗岩的成岩过程主要为深源熔体和流体与原岩的相互作用,并使原岩发生不同程度的部分熔融,因而其地球化学特征同时受到原岩和外来熔体-流体的控制。底侵和内侵是造山过程晚期-期后挤压-拉张转折期地壳垂向增生的重要方式,而平顶山这类片麻状花岗岩则是这种垂向增生的产物。  相似文献   

6.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

7.
The El Sibai area of the Central Eastern Desert (CED) of Egypt consists of an ophiolitic association of arc metavolcanics, ophiolitic rocks, mélange, metasediments and minor mafic intrusions; and a gneissic association of amphibolite, gneissic diorite, tonalite, granodiorite and granite. Previous studies of the El Sibai area have identified the gneissic association as a lower crustal infrastructure in sheared contact with upper crustal ophiolitic association suprastructure, and have presented it as an example of a metamorphic or magmatic core complex. Detailed structural remapping of the El Sibai area reveals that the gneissic association rocks are not infrastructural but form a unit within the ophiolitic association nappes. Furthermore, the El Sibai structure is not domal in shape, and is not antiformal. The main gneissic association rocks are tabular intrusions roughly concordant with the shears dividing the ophiolitic association into nappes, and are syn-kinematic with the nappe stacking event (∼700–650 Ma). The gneissic granite tabular intrusions and their ophiolitic host were later folded about upright NW–SE trending mainly open folds during a NE–SW directed shortening event (∼625–590 Ma). Subsequently, NW–SE regional extension effects became evident including low angle normal ductile shear zones and mylonites. The latest gneissic red granites are syn-kinematic with respect to these shear zones. Probably continuing from the low-angle shearing event were steep normal faults, and sinistral WNW and N–S trending transcurrent faults (∼590–570 Ma). The normal faults mark the southeastern and maybe also the northwestern limits of the El Sibai gneissic association rocks. The El Sibai complex is not a core complex, but exemplifies the overlap of NW–SE folding and NW–SE extensional which is a significant theme of CED regional structure.  相似文献   

8.
大悟杂岩位于大别山西段,主体为花岗质片麻岩。为了限定其形成与变形过程,本文综合运用锆石U-Pb法和白云母~(40) Ar/~(39) Ar法进行年代学研究。锆石U-Pb LA-ICP-MS法对这些花岗质片麻岩定年结果显示:锆石的Th/U值为0.79~4.29,属于典型的岩浆锆石特征;206Pb/238 U的加权平均年龄为(810±63)Ma(n=12,MSWD=0.021),代表这些花岗质片麻岩的形成时代。大悟杂岩核部花岗质片麻岩的白云母坪年龄为(210.5±1.4)Ma,相应的等时线年龄为(211.6±2.5)Ma。这些新的研究结果支持以下两点认识:大悟杂岩中的花岗质片麻岩形成于新元古代,而不是白垩纪;这些前寒武纪岩石的构造抬升过程发生在三叠纪晚期(211 Ma)。由于西大别晚三叠世构造与高压—超高压变质岩的出露过程有关,因此,大悟杂岩的变形与高压—超高压变质岩的抬升之间的关系就成为一个耐人寻味的科学问题。同时,由于大悟杂岩中的多数构造面理和线理形成于区域高压—超高压变质作用之后,据此推断西大别三叠纪晚期的变形发生在造山晚期-后造山背景下,伴随着地壳和岩石圈的大规模伸展与减薄。  相似文献   

9.
为了确定五龙金矿围岩的侵位和变形时代,进一步探讨辽东地区晚中生代构造体制转折时限,采用岩相学观察和锆石SHRIMP U-Pb定年技术,对辽东五龙大型金矿的围岩五龙岩体、侵入五龙岩体中的花岗斑岩脉和三股流岩体进行了研究。结果表明,五龙岩体具弱片麻状、片麻状构造,花岗斑岩脉也发生了变形作用,三股流岩体未发生变形作用。五龙岩体SHRIMP U-Pb年龄为(159.2±1.9) Ma和(160.0±1.4) Ma,花岗斑岩SHRIMP U-Pb年龄为(132.14±0.85) Ma,三股流岩体SHRIMP U-Pb年龄为122~124 Ma。辽东五龙岩体经历的推覆、挤压事件止于132~124 Ma。辽东地区晚侏罗世的推覆、挤压事件与古太平洋板块向欧亚大陆俯冲作用关系密切,五龙金矿的成矿大地构造背景亦与此次俯冲有关。  相似文献   

10.
在天山造山带觉罗塔格山系东段的中天山地块内,新识别出一套侵位于长城系星星峡群变质岩中的片麻状花岗质岩体,岩石组合为片麻状闪长岩+片麻状花岗闪长岩+片麻状二长花岗岩+片麻状钾长花岗岩,锆石SHRIM PU-Pb测年表明这套侵入岩的结晶年龄为(1 453±15)~(1 458±40)Ma(207Pb/206Pb表面年龄),是中元古代晚期的产物。岩石学及地球化学特征显示为高钾钙碱性系列,具I型花岗岩组合特征,形成于板块汇聚的环境。这套花岗质侵入岩的厘定,对于可能存在于元古宙的天山洋的闭合事件,从岩浆作用上提供了重要信息,同时对中天山星星峡群的地层时代提供了一个很好的上限。另外,还发现了一颗形成年龄为(2 991±22)Ma的残留锆石,指示该区可能存在太古宙的古老基底。  相似文献   

11.
In the Lesser Himalayan region of Garhwal, an elongate, NW-SE trending zone of mylonitic rocks is developed along the Singuni Thrust within the metasedimentary formation of the Deoban-Tejam Belt. Detailed petrography of various mylonitic rocks indicates that a quartz and felspar porphyry was emplaced along the Singuni Thrust. This was initially metamorphosed in the almandine-amphibolite facies before profound ruptural or cataclastic and crystalloblastic deformation evolved mylonitic rocks in the green schist facies. Southwesterly dipping foliation and an equally prominent mica lineation plunging in the same direction are developed in these mylonitic rocks. The quartzite is also intensely cataclastically deformed in the green schist facies and is highly schistose with a prominent mica lineation normal to the trace of Singuni Thrust, Uttarkashi Thrust and Main Central Thrust in the ‘a’ direction of tectonic transport. In quartzite and mylonitic rocks, a probable contemporaneous development of the metamorphic and structural elements has been postulated along the Singuni Thrust during large scale tectonic movements. Normally exposed Gamri Quartzite is more metamorphosed near its base along the Singuni Thrust and Uttarkashi Thrust while the intensity of deformation increases near the top of normally exposed quartzite along the Main Central Thrust and, thus, signifying the role of thrusting in cataclastically deforming the rocks and contributing to the phenomenon of widespread reversal of metamorphism in the Lesser Himalaya.  相似文献   

12.
平阳片麻状奥长花岗岩位于河北阜平县平阳镇一带,围岩为包括混合岩和片麻岩在内的变质表壳岩,层位上相当于阜平群的下部,产阳地区空间上存在高级变质作用、混合岩化作用和深熔作用的“三位一体”,因而由变质岩到花岗岩显示了系统的岩石学、岩相学以及产出关系上的渐变过渡特点,花岗岩中的变质表壳岩以及部分包体不仅在岩性上可和外围的同类岩石对比,而且也显示了明显的深熔作用改造的痕迹,有较为充分的语气表明平阳片麻状花岗岩总体上是原地深熔的奥长花岗岩,局部发生了一定尺度的位移。平阳地区变质表壳岩的深熔作用经历了以流体活动占主导地位、以矿物的溶解和重结晶为主要特点的早期阶段,演变为以部分矿物的熔融占主导地位的高级阶段,平阳片麻状奥长花岗岩的形成代表了阜平岩群变质表壳岩深熔作用的高级演化阶段,对于客观认识阜平岩群的组成和地质演化具有重大意义。  相似文献   

13.
The Dharwar craton in the southern Indian shield has a wide distribution of volcano-sedimentary sequences surrounded by a vast gneissic complex, both of which have been intruded by younger granites. A gravity anomaly map of this craton, compiled from all the available data, is analysed here to study the structures and depths of the greenstone belts, the mode of granite emplacements and the greenstone-gneiss-granite associations in general. The anomaly map is a mosaic of well-defined gravity highs and lows characterizing the dense volcano-sedimentary sequences and exposed and/or concealed granites respectively. Gravity modelling indicates that the Shimoga belt has a limited depth range of only 3–4 km while the Chitradurga and Sandur belts have greater depths of over 10 km. The structures inferred for the Dharwar formations are alternating bands of synclines, filled with dense schistose rocks, separated by anticlinal ridges of gneisses and granites.  相似文献   

14.
Detailed geological,chronological,mineralogical,petrological and geochemical studies have been conducted of the Chichent gneissic complex in northwestern Hebei province.The gneissic complex is composed mainly of tonalitic-granodioritic rocks according to O'Connor's classification.The zircou U-Pb age of the gneissic complex is 2468-27^+33 Ma.,consistent with that of the rocks in the North Tonalitic-granodioritic Gneiss Belt in the North China Platorm.The Archean Chicheng gneissic complex is part of the belt.No significant difference in composition between early anhedral metasomatic and late semi-euhedral plagiocalases suggests that the gneissic complex is not composed merely of mafic rocks replaced by felsic fiuids.The REE patterns in the complex,in conjunction with major and trace elements data,show that the gneissic complex is the mixture of felsic magma produced by partial melting of FI dacitic granulite and crystallate derived from the magma produced by 50%±partial melting of TH2 tholeiitic granulite and 40%±fractional crystallization of hornblende.  相似文献   

15.
李自杰 《黄金地质》1996,2(3):20-24
由于变形地质体的组成和结构的不均一性,导致在较深构造层次和伸展变形体制下的变形分解,形成了招掖地区以中粗粒花岗岩为代表的弱应变域和以片麻状花岗岩为代表的强应变带,受应变软化和应变局部化的影响,由片麻状花岗岩组成的强应变带控制着招掖金矿带的产出。  相似文献   

16.
The northern Snake Range, east-central Nevada, is one of the metamorphic core complexes of the Sevier hinterland. Within the range a major décollement separates an ‘upper plate’ composed of brittlely deformed Paleozoic sedimentary rocks (mostly carbonates), from a ‘lower plate’ composed of metamorphic Upper Precambrian-Lower Cambrian rocks, intruded by gneissic granites. A study of the geometry and kinematics of structures and fabrics at outcrop scale and in thin sections indicates that: the northern Snake Range décollement has been a zone of intense non-coaxial E-vergent shear and transport in a ∼- N115°E direction. Outstanding asymmetric boudinage within the marble sheet capping the lower plate testifies for late ductile shear strains (γ) of at least 20. The interface between brittlely and ductilely deformed rocks seems too sharp to represent a regional rheological transition, but might result from two distinct phases of deformation. Ductile deformation in and below the décollement could have occurred before brittle deformation in the upper plate. Brittle faulting in the upper plate related to Basin and Range extension reactivated the upper surface of the ductile shear zone. High topographic relief on the normal faults bounding the range triggered the slide of olistolites from the upper plate into the adjacent Oligo-Miocene basins.  相似文献   

17.
The Banded Gneissic Complex (BGC) of Rajasthan, considered to form the basement underlying the Precambrian (Proterozoic) Aravalli metasediments, shows an erosion surface marked by a conglomerate and an angular unconformity, with gneissic foliation crossing the metasedimentary bands at only a few places. The BGC is a composite gneiss, evolved by extensive migmatization of metasedimentary rocks of diverse composition, and possibly metaigneous rocks. The contact between the BGC and the Aravalli rocks is a gently curved surface, whereas the gneissic foliation, as well as the large-scale metasedimentary enclaves within the gneissic complex, show all the intricate patterns of super-imposed folding traceable in the Aravalli rocks. This implies that the “basement” gneisses have been involved in ductile deformation with the Aravalli rocks, the migmatization being synkinematic with the first deformation in the latter. All these apparently conflicting lines of evidence can be resolved if the gneisses, as we see them now, represent not the original, but the mobilized basement, with the BGC-Aravalli boundary representing, for a large part, a migmatite front, rather than the original basement-cover interface. Only at a few places was there a chance of the original basement escaping mobilization and thus, little chance of identifying this original interface.  相似文献   

18.
The Lick Observatory 7.5-minute quadrangle exposes evidence of geologic events that range from subduction of Mesozoic Franciscan Complex, through accumulation of marine Miocene porcellanite and clastics, to the development of the San Andreas fault system and deformation within it. The active Calaveras fault zone, with its linear valleys and subparallel strike-slip strands, transects the quadrangle and, northwest of San Filipe Valley, joins and incorporates the older Madrone Springs fault. The topography has formed in the past 1 to 2 million years and rises northeastward from the East Evergreen range-front thrust, across the Calaveras and several inferred mountain-building faults, to the 1280 m crest of Mt. Hamilton.

The stratigraphy includes coherent, variously schistose metagraywacke of the late Mesozoic Franciscan Complex; discordant zones of melange of sheared shale and blocks that include blueschist and eclogite; serpentine that may represent the Coast Range Ophiolite; relatively undeformed sandstone, shale, and conglomerate of the late Mesozoic Great Valley sequence; marine Miocene Claremont Porcellanite, mudstone, and Briones Sandstone; and deformed nonmarine gravels of the Pleistocene and Pliocene Santa Clara Formation.

The Franciscan sandstones are complexly deformed and discordantly transected by tectonically emplaced melange zones; a local chert mass marks the remnant of a discordantly overlying thrust sheet. Southwest of the Calaveras zone, folded Miocene rocks are faulted over the more strongly deformed Great Valley sequence. Those rocks, in turn, are thrust over small windows of Franciscan rock, and the entire mountain mass is thrust over Santa Clara gravels at the foot of the range. These latter structures postdate the 3.5 Ma imposition of compression across the plate margin suggested by plate tectonic reconstructions.  相似文献   

19.
<正> 近年来,在前寒武纪中朝古地块上已测得几组超过30亿年,接近35亿年的放射性年龄(3330Ma/U-Pb,3257Ma/Rb-Sr,3500/Sm-Nd,3479Ma/Rb-Sr,3670Ma/Rb-Sr)及相当丰富的大于25亿年的U-Pb、Pb-Pb、Rb-Sr年龄(王东方等1984),进一步说明该地块是一个最初由云英、长英片麻岩、绿岩/花岗岩组成的太古宙古陆核。在此基础上,经元古宙  相似文献   

20.
Metamorphic rocks in the Osor complex (Guilleries massif, NE Iberian Peninsula) show the following structural and compositional features: strong differentiation into quartz-rich gneissic semipelitic and quartz-absent, mica-rich schistose bands, higher density of igneous (both basic and leucogranitic) and quartz veins in the schistose domains and strong strain partitioning in the pelitic bands. Garnet is present in both kinds of lithologies, showing also differential textural and chemical features interpreted to be dependent on bulk composition, deformation and fluid interaction histories. Textures, mineral composition and thermobarometry suggest the operation of concurrent mechanical, mass transfer and thermal phenomena such as: (1) variations in strain style, (2) fluid infiltration, (3) magmatic injection and (4) HT–LP metamorphic and metasomatic episodes. The following sequence of events is suggested: initially the cooling of syntectonic high-T basic quartz diorite sheets promoted high strain rates, low dP/dT thermobaric evolution, incipient anatexis in the pelitic bands and devolatilization through a pervasive to vein-channelized prograde fluid flow. The prograde flow enhanced an ongoing compositional tectono-metamorphic differentiation and produced metasomatism through depletion of the Osor rocks in alkalis and calcium. Later injection and cooling of peraluminous leucogranitoid sheets, preferentially along pelitic bands, increased the ratio of magmatic/metamorphic components in the fluids and strongly enriched them in alkalis producing a second metasomatic episode. During crystallization of quartz and leucogranitoid veins, the pelitic bands were strongly enriched back again in alkalis, promoting the blastesis of big crystals of post-peak muscovite and albite as well as the retrogression of garnet. The metasomatic mica-rich levels must have been the preferred locus for development of a new deformation style dominated by shear band fabrics in metapelites and related to a release of the gravitational instability originated previously due to crustal thickening. The increasing decompressional component of the retrograde PT path also suggests that this style of deformation was prevalent during, if not responsible for, a phase of exhumation of the metamorphic complex. It is suggested that similar patterns of thermomechanical and mass transfer phenomena could well be a fundamental characteristic common to all HT–LP metamorphic belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号