首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用NCEP/NCAR再分析资料通过合成分析的方法研究了热带平流层准两年振荡(QBO)影响热带对流层顶及深对流活动的基本特征及可能的物理机制。研究发现,QBO对对流层顶和大气射出长波辐射(OLR)的影响存在明显的季节和空间上的差异。QBO对对流层顶和OLR的影响在冬、秋季最大,春、夏季相对较弱。与QBO造成的对流层顶高度和温度异常所不同是,QBO造成的OLR异常并没有呈现出一样的沿热带的带状分布特征,OLR异常沿赤道区域有正有负。另外,QBO对OLR的影响主要在热带对流活跃区域,尤其是在印度尼西亚和西太平洋区域,QBO东风位相下的对流活动要强于QBO西风位相下的对流活动。QBO造成的OLR异常和对流层顶异常在水平分布上有显著的差异,表明QBO对对流层顶的影响主要是与QBO风切变的异常有关,QBO影响热带深对流活动进而影响对流层顶温度的作用是次要的。进一步研究QBO影响对流活动可能的机制发现,QBO造成的浮力频率异常和对流层有效位能(CAPE)异常与OLR异常在水平分布上有较一致的变化,说明QBO不仅通过调节对流层顶高度和温度影响热带的深对流活动,还可以通过调节对流层的静力稳定度、CAPE来影响热带地区深对流活动。  相似文献   

2.
The pre-monsoon convective atmosphere over Kolkata (22.52°N, 88.37°E) during STORM field phase 2006–2008 is investigated using 12 UTC radiosonde data and thermodynamic indices. In the present study, an attempt has been made to assess the skill of various indices and parameters and to propose suitable threshold values in forecasting the occurrence of thunderstorm activity at Kolkata. The thermodynamic indices and parameters used in the present study are lifted index (LI), K index (KI), severe weather threat index (SWEAT), total totals index (TTI), convective available potential energy (CAPE), deep convection index (DCI), humidity index (HI), Boyden index (BI), dew point temperature at 850 hpa (DEW), relative humidity at 700 hpa (RH), and bulk Richardson number (BRN). Validation of the suggested threshold values of indices was conducted on the days of thunderstorm activity. It was found that one index alone cannot predict the occurrence of thunderstorm over Kolkata region. The present study suggests that the indices with highest skill for thunderstorm prediction are KI, DCI, SWEAT, DEW, HI, RH, LI, TTI, while the prediction efficiency is poor for CAPE, BRN, and BI. Observed values of these indices also reveal that scattered, multi-cellular thunderstorms are possible over Kolkata during pre-monsoon months.  相似文献   

3.
COVID-19 pandemic has forced to lockdown entire India starting from 24th March 2020 to 14th April 2020 (first phase), extended up to 3rd May 2020 (second phase), and further extended up to 17th May 2020 (third phase) with limited relaxation in non-hotspot areas. This strict lockdown has severely curtailed human activity across India. Here, aerosol concentrations of particular matters (PM) i.e., PM10, PM2.5, carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), ammonia (NH3) and ozone (O3), and associated temperature fluctuation in four megacities (Delhi, Mumbai, Kolkata, and Chennai) from different regions of India were investigated. In this pandemic period, air temperature of Delhi, Kolkata, Mumbai and Chennai has decreased about 3 °C, 2.5 °C, 2 °C and 2 °C respectively. Compared to previous years and pre-lockdown period, air pollutants level and aerosol concentration (?41.91%, ?37.13%, ?54.94% and ?46.79% respectively for Delhi, Mumbai, Kolkata and Chennai) in these four megacities has improved drastically during this lockdown period. Emission of PM2.5 has experienced the highest decrease in these megacities, which directly shows the positive impact of restricted vehicular movement. Restricted emissions produce encouraging results in terms of urban air quality and temperature, which may encourage policymakers to consider it in terms of environmental sustainability.  相似文献   

4.
Chaudhuri  S.  Khan  F.  Das  D.  Mondal  P.  Dey  S. 《Natural Hazards》2020,102(3):1571-1588

Thunderstorm overshooting is rare but not an unusual phenomenon in a metropolitan of India, Kolkata (22.57° N; 88.36° E) during the pre-monsoon months (April–May). An attempt is made in this study to identify the important parameters differentiating the thunderstorms in overshooting and non-overshooting categories through data analytics from 2000 to 2015. The present investigation on parametric classification would facilitate in estimating the predictability of thunderstorms with overshooting which subsequently might assist in operational forecast of thunderstorm severity over Kolkata. The altitudes of lifting condensation level (LCL), wind shear, bulk Richardson number (BRN), gust speed, boundary layer characteristics and their correlation with thunderstorm cloud top height (CTH) and also their variation and distribution during overshooting (OTS) and non-overshooting (TS) thunderstorms are analyzed in this study. The result depicts that over Kolkata the intensity of storms during OTS is higher than during TS though the frequency of OTS is less than that of TS. The results further show that the potential temperature (θ), equivalent potential temperature (θe), mixing ratio (es) in the boundary layer, convective available potential energy, convective inhibition energy, BRN and gust speed play significant roles in regulating the CTH during OTS and TS thunderstorms over Kolkata.

  相似文献   

5.
Diurnal, seasonal and annual foF2 variability and the response of the F2-layer height over Jicamarca (11.9 °S, 76.8 °W, 1 °N dip) during periods of low (LSA), moderate (MSA) and high (HSA) solar activities was investigated. The relative standard deviation (V R ) was used for the analysis. The F2-layer critical frequency pre-noon peak increases by a factor of 2 more than the post-noon peak as the solar activity increases. The variability coefficient (V R ) is lowest during the day (7–16%) for the three solar epochs; increases during nighttime (20–26%, 14–26%, and 10–20%, respectively for the LSA, MSA and HSA years); and attained highest magnitude during sunrise (21–27%, 24–27%, and 19–30%, respectively in similar order). Two major peaks were observed in V R – the pre-sunrise peak, which is higher, and the post-sunset peak. Generally, the variability increases as the solar activity decreases. Annually, V R peaks within 23–24%, 19–24% and 15–24% for the LSA, MSA, and HSA periods, respectively. The ionospheric F2-layer height rises to the higher level with increasing solar activity. The foF2 comparison results revealed that Jicamarca is well represented on the IRI-2012 model, with an improvement on the URSI option. The importance of vertical plasma drift and photochemistry in the F2-layer was emphasized.  相似文献   

6.
In Mesozoic metacarbonates of the Tethyan Himalayas (Shiar Khola area, Central Nepal) two characteristic remanent magnetisations (ChRM1 and ChRM2) were identified by their unblocking temperature spectra. The ChRM1 is carried by pyrrhotite (unblocking temperature: 270–360°C) and the ChRM2 by magnetite (unblocking temperature spectra: 430–580°C). The temperature-related formation of pyrrhotite at the expense of primary magnetite during low-grade metamorphism in marly carbonates allows the determination of thermal gradients by the pyrrhotite/magnetite ratio. This new method can be used as a geothermometer for T≤300°C in low-grade metamorphic carbonates, where other methods are not available. This method is applied for the first time in the Tethyan Himalayas of Central Nepal.In the Shiar Khola valley, systematic variations in the ferrimagnetic content of the metacarbonates along an E–W profile were detected by the ratio of remanence intensity of pyrrhotite to magnetite, derived from natural remanent magnetisation (RPYR/MAG) and saturation magnetisation (SPYR/MAG). Over a stretch of 10 km the RPYR/MAG and SPYR/MAG increase from W to E from ~0.42 to ~0.91 and ~0.48 to ~1.0, respectively. Based on temperature estimates, the eastern part experienced upper anchizone–epizone (~250–300°C) conditions, while the western part underwent only diagenesis (~200°C). The temperature gradient and the temperature ranges suggested are consistent with the findings of the calcite twin lamellae geothermometry which is a non-magnetic method.  相似文献   

7.
The structure, structural disorder and chemistry of miserite from the charoite-bearing rocks of the Murun massif (Russia) and from alkaline-syenite pegmatitic rocks of the Dara-i-Pioz massif (Tajikistan) were investigated employing a combination of electron microprobe, single crystal diffraction and micro-Fourier transform infrared spectroscopy analysis. Chemical analysis of the sample investigated by X-ray diffraction evidenced that Dara-i-Pioz miserite has a greater REE concentration than Murun miserite (~0.22 vs. 0.05 apfu, respectively) and also contains Y (0.14 apfu), which is absent in Murun miserite. The occurrence of a band at about 1,600 cm?1 testified to the presence of H2O in miserite at hand. Structural analyses yielded average cell parameters of a = 10.092, b = 16.016, c = 7.356 Å, α = 96.60°, β = 111.27° and γ = 76.34°. Anisotropic structural refinement in space group P $\bar{1}$ converged at similar values for the analyzed samples (R ~3.4, R w ~3.8 %). An interesting feature shown by both the miserite specimen is the presence, revealed by difference Fourier analysis, of a disordered part of the structure. This turned out to be due to the flipping of the tetrahedra belonging to the isolated [Si2O7]6? diorthogroups, one of the two radicals (the other is [Si12O30]12?) characterizing the miserite structure. The sixfold and seven-vertex Ca polyhedra linked to the inverted diorthogroups show variation in coordination number with respect to those of the ordered structure.  相似文献   

8.
The rays of enhanced brightness making up the structure of the coronal-streamer belt can be traced to the lowest atmospheric layers in the Sun, with the angular size remaining nearly constant, d ≈ 2.5° ± 0.5°. This suggests that the physical mechanism generating the slow solar wind in the rays of the streamer belt differs from the mechanism giving rise to the fast solar wind from coronal holes. At distances of R < (4–5) R , the rays of the streamer belt are not radial in the plane of the sky and show deviations toward the corresponding pole. They then become essentially radial at R > (4–5) R . A transverse cross section of streamers in the corona and its continuation into the heliosphere—a plasma sheet—can be represented as two radially oriented, closely spaced rays (d ≈ 2.0°–2.5°) with enhanced density and an angular size of d. We also show that the ray structure of the streamer belt is involved in the development of coronal mass ejections (CMEs). The motion of a small-scale CME occurs within a magnetic flux tube (ray of enhanced brightness) and leads to an explosive increase in its angular size (rapid expansion of the tube). It seems likely that large-scale CMEs are the result of the simultaneous expansion of several magnetic tubes. We suggest that a small-scale CME corresponds to a “plasmoid” (clump of plasma of limited size with its own magnetic field) ejected into the base of a magnetic tube, which subsequently moves away from the Sun along the tube.  相似文献   

9.

The detrimental effects of an earthquake are strongly influenced by the response of soils subjected to dynamic loading. The behavior of soils under dynamic loading is governed by the dynamic soil properties such as shear wave velocity, damping characteristics and shear modulus. Worldwide, it is a common practice to obtain shear wave velocity (V s in m/s) using the correlation with field standard penetration test (SPT) N values in the absence of sophisticated dynamic field test data. In this paper, a similar but modified advanced approach has been proposed for a major metro city of eastern India, i.e., Kolkata city (latitudes 22°20′N–23°00′N and longitudes 88°04′E–88°33′E), to obtain shear wave velocity profile and soil site classification using regression and sensitivity analyses. Extensive geotechnical borehole data from 434 boreholes located across 75 sites in the city area of 185 km2 and laboratory test data providing information on the thickness of subsoil strata, SPT N values, consistency indices and percentage of fines are collected and analyzed thoroughly. A correlation between shear wave velocity (V s) and SPT N value for various soil profiles of Kolkata city has been established by using power model of nonlinear regression analysis and compared with existing correlations for other Indian cities. The present correlations, having regression coefficients (R 2) in excess of 0.96, indicated good prediction capability. Sensitivity analysis predicts that significant influence of soil type exists in determining V s values, for example, typical silty sand shows 30.4 % increase in magnitude of V s as compared to silt of Kolkata city. Moreover, the soil site classification shows Class D and Class E category of soil that exists typically in Kolkata city as per NEHRP (Recommended provisions for seismic regulations for new buildings and other structures—Part 1: Provisions. Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 450), Washington, DC, 2003) guidelines and thereby highlighting the seismic vulnerability of the city. The results presented in this study can be utilized for seismic microzonation, ground response analysis and hazard assessment for Kolkata city.

  相似文献   

10.
Based on the MAGSAT magnetic anomaly fields over Europe and the adjacent areas spherical cap models have been derived. The method of spherical cap harmonic analysis, due to Haines (1985), has been applied for the modelling of the MAGSAT magnetic anomalies. The data set used in the analysis included the 1 ° × 1 ° gridded values of the MAGSAT anomaly fields between latitudes ϑ = 6 ° to 60 °N and longitudes λ = 19 °W to 70 °E. The pole of the cap is at ϑ = 33 °N and λ = 26 °E and its half-angle is 40 ° . The maximum index (Km) of the model is 18 and the total number of model coefficients is 361. A minimum wavelength corresponding to this index at the Earth's surface is ~ 1000 km. The RMS deviations between the calculated and observed values are ~ 4 nT for δX, ~ 3 nT for ΔY and 3,5 nT for ΔZ respectively. The spherical cap harmonic model was used for the construction of magnetic anomaly maps for all components and at different altitudes.  相似文献   

11.
Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the R_f/φ method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S_3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge ~70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(R_(xy)) parallel to bedding plane and 1.46(R_(yz)) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of~-28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.  相似文献   

12.
Celestite solubility measurements have been conducted in pure water at temperatures from 10 to 90°C. Equilibrium was achieved with respect to a crystalline solid phase from both undersaturated and supersaturated solutions. The measurements show that the solubility undergoes a maximum near 20°C. LogK values for the solubility reaction are adequately described by the following expression over the temperature range 283.15 to 363.15 K: −logK= −35.3106+0.00422837T+318312/T2+14.99586 logT.The following thennodynamic values for the dissolution reaction of SrSO4(s), at 25°C have been derived: ΔGR0 = 37852 ± 30 Jmol−1ΔHR0 = −1668±920Jmol−1ΔSR0= −132.6±3.2JK−1mol−1Celestite solubility measurements were also determined in NaCl solutions up to 5 m concentration and from 10 to 40°C. These data are in good agreement with the work of StrÜbel (1966), who reports solubility measurements to temperatures of 100°C.The application of the Pitzer relations and the solubility constants determined in this study to calculate celestite solubility in NaCl solutions yields excellent agreement between predicted values and experimental measurements over the entire range of temperature and NaCl concentration conditions. For the limited number of solubility measurements in seawater-type solutions and mixed-salt brines, the agreement using the Pitzer relations is within three percent of the measured solubility.  相似文献   

13.
The upper air RS/RW (Radio Sonde/Radio Wind) observations at Kolkata (22.65N, 88.45E) during pre-monsoon season March–May, 2005–2012 is used to compute some important dynamic/thermodynamic parameters and are analysed in relation to the precipitation associated with the thunderstorms over Kolkata, India. For this purpose, the pre-monsoon thunderstorms are classified as light precipitation (LP), moderate precipitation (MP) and heavy precipitation (HP) thunderstorms based on the magnitude of associated precipitation. Richardson number in non-uniformly saturated (R i *) and saturated atmosphere (R i ); vertical shear of horizontal wind in 0–3, 0–6 and 3–7 km atmospheric layers; energy-helicity index (EHI) and vorticity generation parameter (VGP) are considered for the analysis. The instability measured in terms of Richardson number in non-uniformly saturated atmosphere ( \(R_{i}^{\mathrm {\ast } })\) well indicate the occurrence of thunderstorms about 2 hours in advance. Moderate vertical wind shear in lower troposphere (0–3 km) and weak shear in middle troposphere (3–7 km) leads to heavy precipitation thunderstorms. The wind shear in 3–7 km atmospheric layers, EHI and VGP are good predictors of precipitation associated with thunderstorm. Lower tropospheric wind shear and Richardson number is a poor discriminator of the three classified thunderstorms.  相似文献   

14.
The components U0 and V0 of the solar motion and the Oort constant A0 are determined using the data of a homogeneous open-cluster catalog with corrected distance moduli. The results are based on a sample of 146 open clusters with known radial velocities located in the Galactic plane (b<7°) within 4 kpc of the Sun. The solar Galactocentric distance R0 is determined using two kinematic methods. The following results are obtained: A0=17.0±0.9 km/s kpc, U0=10.5±1.0 km/s, V0=11.5±1.1 km/s, R0=8.3±0.3 pc.  相似文献   

15.
The Shaw L-group chondrite differs from orthodox type 6 ordinary chondrites in ways which suggest that it experienced unusually high metamorphic temperatures and anatexis. Electron microprobe and single crystal X-ray diffraction data indicate that Shaw contains three pyroxenes: the augite (Fs11.3Wo38.2) and calcic orthopyroxene (Fs19.4WO4·5) reported by other workers and a second, Ca- and Al-poor orthopyroxene (Fs16·8Wo1·2) which we interpret as inverted protobronzite. Comparison of the Shaw assemblage with experimental data suggests that a two-phase (augite-protobronzite) assemblage developed at peak metamorphic temperatures of ~1250–1300°C, that partial reaction of augite and protobronzite produced calcic orthopyroxene and by-product spinel at temperatures approximately 150°C lower and that protobronzite inverted to bronzite free of stacking disorder during subsequent slow cooling. The intracrystalline distribution of Fe and Mg in the Ca-poor bronzite (KE + 0·07; determined by crystal structure analysis) indicates an equilibration temperature of ~500°C.Shaw differs sufficiently in texture and mineralogy from type 6 ordinary chondrites to justify its assignment to a separate petrologic type: L-7.  相似文献   

16.
Concentrations of helium isotopes were measured in gas and water samples from 28 thermal mineral springs in Tuva and adjacent regions of Buryatia and Gorny Altai. It is shown that fluids from 16 springs are rich in mantle helium (4–35%). With regard to the air contamination of the samples, the corrected ratios of helium isotopes (Rcor = 3He/4He) in these springs vary from 5.3 × 10–8 to 422 × 10–8. Using these Rcor values, we estimated the heat flow; these estimates were then applied to calculate the deep-level temperatures and thickness of thermal lithosphere. According to these parameters, the Tuva region is divided into two parts. Eastern Tuva (from ~96° E to the boundary with Buryatia) is characterized by abnormal helium isotope ratios and heat flow indicating the intense heating of the Earth’s crust in eastern Tuva: At a depth of 50 km, a temperature reaches 1000–1200 °C, and the thickness of thermal lithosphere is reduced to 70–50 km. This testifies to a rift process west (probably, up to 96° E) of the Baikal Rift Zone. In western Tuva, the average heat flow is much lower, ~45–50 mW/m2, which is commensurate with that in the Altai–Sayan folded area as a whole. The deep-level temperatures here are twice lower, and the lithosphere thickness increases to 150 km.  相似文献   

17.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

18.
Faraday rotation measurements made at a chain of stations and group delay measurements made at Ootacamund from ATS-6 are examined for the partial solar eclipse event of 29 April 1976. There is no evidence of eclipse-induced gravity waves in these measurements extending from Ootacamund near dip equator to Patiala (dip 45° N). Eclipse-induced fluctuations were however reported at Trivandrum, about 300 km south of Ootacamund.  相似文献   

19.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   

20.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号