首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

2.
A single recovery type curve from Theis'' exact solution   总被引:2,自引:0,他引:2  
Samani N  Pasandi M 《Ground water》2003,41(5):602-607
The Theis type curve matching method and the Cooper-Jacob semilog method are commonly used for estimation of transmissivity and storage coefficient of infinite, homogeneous, isotropic, confined aquifers from drawdown data of a constant rate pumping test. Although these methods are based on drawdown data, they are often applied indiscriminately to analyze both drawdown and recovery data. Moreover, the limitations of drawdown type curve to analyze recovery data collected after short pumping times are not well understood by the practicing engineers. This often may result in an erroneous interpretation of such recovery data. In this paper, a novel but simple method is proposed to determine the storage coefficient as well as transmissivity from recovery data measured after the pumping period of an aquifer test. The method eliminates the dependence on pumping time effects and has the advantage of employing only one single recovery type curve. The method based on the conversion of residual drawdown to recovered drawdown (buildup) data plotted versus a new equivalent time (delta(t) x t(p)/t(p) + delta(t)). The method uses the recovery data in one observation point only, and does not need the initial water level h0, which may be unknown. The accuracy of the method is checked with three sets of field data. This method appears to be complementary to the Cooper-Jacob and Theis methods, as it provides values of both storage coefficient and transmissivity from recovery data, regardless of pumping duration.  相似文献   

3.
An algorithm for the Theis solution of pumping test data has been developed taking into account the basic principles of graphical approach of curve-matching. The method is simple and does not need initial approximation of transmissivity and storativity as required by approaches suggested by Saleem (1970) and Mc Elwee (1980). As a measure of error of fitting, integral square error is computed between the observed drawdown and drawdown calculated from the theoretical equation with the values of coefficients estimated by the procedure. Also root mean square deviation in drawdown is calculated. The algorithm is capable of identifying data with errors in observation or recording. The reliability of the algorithm and its limitations are discussed on the basis of test runs with synthetic data having varying magnitudes of error and varying distributions of error points in the data set. The estimates of parameters by the proposed algorithm for a typical field test data compare very well with the estimates by the sensitivity approach developed by Mc Elwee (1980).  相似文献   

4.
The Theis equation has been widely used to study the transient movement of groundwater as a result of pumping in a confined aquifer. It is well known that the observed drawdown at early times has an obvious departure from the theoretical drawdown based on the Theis equation. The Theis equation was derived under the assumption that total stress in the aquifer was constant and the mechanical behavior of the confining unit was neglected. However, most geological formations, especially those which are well consolidated, have rigidity and therefore may bend like a plate to a certain extent. The increase in the effective stress in the aquifer due to pumping may not contribute entirely to the compression of the aquifer, but may be partially cancelled out by bending of the overlying aquitard. This means only a part of the total stress is used to compact the aquifer, or the aquifer cannot produce as much water as estimated from the Theis equation. This paper investigated the impact of the bending effect of the confining unit on drawdown. An analytical model which couples flow in the aquifer and bending of the confining unit was presented. The theory is based on elastic plates and solutions were given to the drawdown of groundwater level and deflection of the overlying formation. The drawdown estimated from the new equation was compared with that from the Theis equation. It can be concluded that drawdown from the Theis equation is less than the drawdown predicted by including the bending effect of the confining unit. Both a hypothetical example and a field pumping test in Shandong Province, China, were used to demonstrate the bending effect of the confining unit in the analysis of pumping test data. This paper demonstrated that the initial disagreement between observed drawdown and the Theis solution could be caused by the bending effect of the confining unit, a phenomenon not well addressed in traditional pumping test analysis. A quantitative understanding of this phenomenon can provide improved guidelines for analyzing drawdown data in a confined aquifer.  相似文献   

5.
The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well‐face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.  相似文献   

6.
Javad Ashjari 《Ground water》2013,51(1):122-127
An aquifer test is used mostly to determine the storage coefficient and transmissivity. Although residual drawdown data are widely used in estimating the transmissivity of aquifers, the estimation of storage coefficients with recovery data is controversial. Some researchers have proposed methods to estimate storage coefficients with recovery data by assuming equality of storage coefficients for the recovery and pumping periods (S = S′). The aim of this study is to determine storage coefficients without such an assumption, that is, S≠S′. The method is a modified version of Banton‐Bangoy's method without considering drawdown data due to pumping. Drawdown is plotted vs. the logarithmic ratio (t′/t) or time since pumping stopped to the duration of pumping and the ratio of storage coefficient during recovery to the storage coefficient from the pumping period (S′/S). The method is verified with one case study and two synthetic examples. Thus, it is possible to determine storage coefficient of pumping period accurately without any data from pumping period by recovery data.  相似文献   

7.
Abstract

Unconfined aquifer parameters, viz. transmissivity, storage coefficient, specific yield and delay index from a pumping test are estimated using the genetic algorithm optimization (GA) technique. The parameter estimation problem is formulated as a least-squares optimization, in which the parameters are optimized by minimizing the deviations between the field-observed and the model-predicted time–drawdown data. Boulton's convolution integral for the determination of drawdown is coupled with the GA optimization technique. The bias induced by three different objective functions: (a) the sum of squares of absolute deviations between the observed and computed drawdown; (b) the sum of squares of normalized deviations with respect to the observed drawdown; and (c) the sum of squares of normalized deviations with respect to the computed drawdown, is statistically analysed. It is observed that, when the time–drawdown data contain no errors, the objective functions do not induce any bias in the parameter estimates and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the case considered, defining the objective function as the sum of the squares of absolute deviations between the observed and simulated drawdowns resulted in the best possible estimates. A comparison of the GA technique with the curve-matching procedure and a conventional optimization technique, such as the sequential unconstrained minimization technique (SUMT), is made in estimating the aquifer parameters from a reported field pumping test in an unconfined aquifer. For the case considered, the GA technique performed better than the other two techniques in parameter estimation, with the sum-of-squares errors obtained from the GA about one fourth of those obtained by the curve matching procedure, and about half of those obtained by SUMT.

Citation Rajesh, M., Kashyap, D. & Hari Prasad, K. S. (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrol. Sci. J. 55(3), 403–413.  相似文献   

8.
The standard practice for assessing aquifer parameters is to match groundwater drawdown data obtained during pumping tests against theoretical well function curves specific to the aquifer system being tested. The shape of the curve derived from the logarithmic time derivative of the drawdown data is also very frequently used as a diagnostic tool to identify the aquifer system in which the pumping test is being conducted. The present study investigates the incremental area method (IAM) to serve as an alternative diagnostic tool for the aquifer system identification as well as a supplement to the aquifer parameter estimation procedure. The IAM based diagnostic curves for ideal confined, leaky, bounded and unconfined aquifers have been derived as part of this study, and individual features of the plots have been identified. These features were noted to be unique to each aquifer setting, which could be used for rapid evaluation of the aquifer system. The effectiveness of the IAM methodology was investigated by analyzing field data for various aquifer settings including leaky, unconfined, bounded and heterogeneous conditions. The results showed that the proposed approach is a viable method for use as a diagnostic tool to identify the aquifer system characteristics as well as to support the estimation of the hydraulic parameters obtained from standard curve matching procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Papadopulos and Cooper's (PC) solution can be used to describe the drawdown resulting from pumping with a constant rate at a large-diameter well. However, this solution is too complicated to be accurately evaluated due to the oscillatory nature of the Bessel functions. The PC approach resulted in tabulated values of dimensionless drawdown at the well with an accuracy of four or fewer digits for selected values of dimensionless storage coefficient versus dimensionless time. Some researchers have fitted the tabulated values with interpolation formulas that are easy to use in engineering applications. Those formulas may be more accurate if the tabulated values are computed with greater accuracy. In this study, we propose an efficient numerical procedure, including a root search scheme, to find the roots of the integrand, Gaussian quadrature for numerical integration, and Shanks transform to accelerate convergence of infinite series. The proposed procedure can evaluate the dimensionless drawdown with greater accuracy and is useful in practice if there is a need for high accuracy for the observation either at the well or in the aquifer at some distance from the pumping well

Editor D. Koutsoyiannis

Citation Chang, Y.C., Yeh, H.D., and Wang, C.T., 2013. Improvement on the estimation of constant-rate drawdown in large-diameter wells. Hydrological Sciences Journal, 58 (3), 716–727.  相似文献   

10.
The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting “reverse water level fluctuations,” known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two‐dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five‐layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect.  相似文献   

11.
Abstract. Two useful programs have been developed for the Hewlett Packard HP41CV programmable calculator. The THEIS program is designed to simulate a well pumping from a confined or unconfined aquifer. Drawdown, residual drawdown, t/t1 and t/r2 are calculated. The BOUN program is designed to solve for drawdown in a well pumping from an aquifer bounded by two parallel impermeable barriers. The programs can be used in aquifer pumping test design, pumping test analysis, and aquifer response predictions.  相似文献   

12.
The interaction between a gaining stream and a water-table aquifer is studied at an outwash plain. The aquifer is hydraulically well connected to the stream. Pumping tests were carried out in 1997 and 1998 in two wells 60 m from the stream, screening different depths of the aquifer. Drawdown was measured on both sides of the stream. Hydraulic head, drawdown, and stream depletion data were analyzed using numerical flow models. Similar models were fitted to each of two different data sets: Model A was fitted to steady-state hydraulic head and streamflow gain data not influenced by pumping; and model B was fitted to drawdown data measured during the 1998 pumping test. Each calibrated model closely fits its calibration data; however, predictions were biased if model A was used to predict the calibration data of model B, and vice versa. To further test the models, they were used to predict streamflow depletion during the two pumping tests as well as the drawdown during the 1997 test. Neither of these data were used for calibration. Model A predicted the measured depletions fairly accurately during both tests, whereas the predicted drawdowns in 1997 were significantly larger than actually measured. Contrary to this, the 1997 drawdowns predicted by model B were nearly unbiased; the predicted depletions deviate significantly from the measured depletions in 1997, but they compare well with the observations in 1998. Thus, although field work and analyses were extensive and done carefully to develop a ground water flow model that could predict both drawdown and streamflow depletion, the model predictions are biased. Analyses indicate that the deviations between model and data may be because of error in the models' representations of either the release of water from storage or of the hydrology in the riparian zone.  相似文献   

13.
We have investigated non‐Darcian flow to a vertical fracture represented as an extended well using a linearization procedure and a finite difference method in this study. Approximate analytical solutions have been obtained with and without the consideration of fracture storage based on the linearization procedure. A numerical solution for such a non‐Darcian flow case has also been obtained with a finite difference method. We have compared the numerical solution with the approximate analytical solutions obtained by the linearization method and the Boltzmann transform. The results indicate that the linearized solution agrees generally well with the numerical solution at late times, and underestimates the dimensionless drawdown at early times, no matter if the fracture storage is considered or not. When the fracture storage is excluded, the Boltzmann transform solution overestimates the dimensionless drawdown during the entire pumping period. The dimensionless drawdowns in the fracture with fracture storage for different values of dimensionless non‐Darcian hydraulic conductivity β approach the same asymptotic value at early times. A larger β value results in a smaller dimensionless drawdown in both the fracture and the aquifer when the fracture storage is included. The dimensionless drawdown is approximately proportional to the square root of the dimensionless time at late times.  相似文献   

14.
The buried-valley aquifers that are common in the glacial deposits of the northern hemisphere are a typical case of the strip aquifers that occur in many parts of the world. Pumping from a narrow strip aquifer leads to much greater drawdown and much more distant drawdown effects then would occur in a sheet aquifer with a similar transmissivity and storage coefficient. Widely used theories for radial flow to wells, such as the Theis equation, are not appropriate for narrow strip aquifers. Previously published theory for flow to wells in semiconfined strip aquifers is reviewed and a practical format of the type curves for pumping-test analysis is described. The drawdown response of strip aquifers to pumping tests is distinctive, especially for observation wells near the pumped well. A case study is presented, based on extensive pumping test experience for the Estevan Valley Aquifer in southern Saskatchewan, Canada. Evaluation of groundwater resources in such buried-valley aquifers needs to take into account the unusually large drawdowns in response to pumping.  相似文献   

15.
Pumping test in a confined aquifer under tidal influence   总被引:2,自引:0,他引:2  
In a coastal environment, tide-induced head fluctuations can complicate the interpretation of drawdown data from pumping tests. For confined aquifers and sinusoidal tides, the superposition principle can be used to obtain a closed-form solution. After subtracting the net tidal effects, the drawdown data become amenable to the standard analyses. Numerical simulations have shown that the method is reliable when the distance of the monitoring well to the well does not exceed 10% of the distance between the well and the tidal boundary.  相似文献   

16.
针对目前单孔稳定流求参存在的问题,本文在分析新生界松散含水层条件及三次降深抽水过程基础上,利用其抽水试验恢复阶段的数据,分别求得各含水层多个参数,其值真实反映了含水层的实际情况。利用多元回归方法,求得降深与流量关系,通过其系数值大小分析,间接得出各含水层的富水性程度,为地下水的勘探与评价提供一定借鉴。  相似文献   

17.
Recent developments in subsurface intake systems for ocean desalination plants are considering use of angled wells (slant wells) completed in permeable materials beneath the ocean floor. Conventional drawdown equations for vertical or horizontal wells are inadequate to properly describe the drawdown distribution in the vicinity of slant wells. Using the principle of superposition combined with standard well hydraulics, universal drawdown equations (UDE) are presented which calculate the drawdown distribution in the vicinity of production wells with inclination angles ranging from 0° (horizontal wells) to 90° (vertical wells). The method is computationally simple and other than the normal assumptions for standard well equations, it only requires that the calculated drawdown represent the drawdown which would be measured in a fully penetrating observation well. Solutions using the UDE are developed for confined, unconfined and semi‐confined (leaky) aquifers and compared with analytical equations for vertical and horizontal wells, and with a numerical model for slant wells. The UDE is also applied to pumping test data from the Dana Point slant well project in Southern California.  相似文献   

18.
Abstract. We have developed a program which aids in the design and analysis of pumping tests and slug tests. In design mode, the program emphasizes calculation and plotting of the sensitivities of drawdown (or head) to well function parameters. In analysis mode, the program can analyze a given set of experimental data. For pumping tests, the program allows multiple observation wells and multiple variable-rate pumping wells. The program is written in a modular fashion, allowing easy addition of well functions to the currently existing library. An example based on a hypothetical pumping test illustrates the utility of sensitivity analysis for well test design.  相似文献   

19.
This paper investigates the impact of heterogeneity of the transmissivity field on the interpretation of steady-state pumping test data from aquifer systems delimited by constant head boundaries such as aquifers adjacent to lakes or rivers. Spatially variable transmissivity fields are randomly generated and used to simulate the drawdown due to a pumping well located at different distances from a constant head boundary. The steady-state drawdown simulated at different observation wells are then interpreted using the Hantush method (Hantush 1959). The numerical simulations show that, in contrast to the case of infinite aquifer domains, the interpreted transmissivity varies depending on well locations and the separation distance between pumping well and boundary relative to the correlation length. The ensemble-averaged estimated transmissivity varies between the geometric mean and the arithmetic mean, and can even exceed the arithmetic mean in a narrow domain adjacent to the boundary. It approaches the geometric mean of the underlying transmissivity field only if the distance between the pumping well is more than 20 times the characteristic length of the transmissivity field.  相似文献   

20.
Zheng L  Guo JQ  Lei Y 《Ground water》2005,43(6):939-942
Theis (1935) derived an exact solution for the residual drawdown in a well after the cessation of a pumping test by summing two drawdowns: one (s1), caused by imaginary continuation of the original pumping and the other (s2), due to an imaginary injection at the same constant rate. We approximated the Theis solution to obtain a simple linear relation for determining the transmissivity and storage coefficient from recovery data. Unlike other existing straight-line fitting methods, in our method, we applied different approximations to the well functions in the solutions of s1 and s2. We used the well-known Cooper-Jacob approximation for s1, truncating the expansion of the well function in s2 to its first three terms. For the same level of truncation errors, while the Cooper-Jacob approximation requires the argument u1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号