首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Megathrust earthquake sequences, comprising mainshocks and triggered aftershocks along the subduction interface and in the overriding crust, can impact multiple buildings and infrastructure in a city. The time between the mainshocks and aftershocks usually is too short to retrofit the structures; therefore, moderate‐size aftershocks can cause additional damage. To have a better understanding of the impact of aftershocks on city‐wide seismic risk assessment, a new simulation framework of spatiotemporal seismic hazard and risk assessment of future M9.0 sequences in the Cascadia subduction zone is developed. The simulation framework consists of an epidemic‐type aftershock sequence (ETAS) model, ground‐motion model, and state‐dependent seismic fragility model. The spatiotemporal ETAS model is modified to characterise aftershocks of large and anisotropic M9.0 mainshock ruptures. To account for damage accumulation of wood‐frame houses due to aftershocks in Victoria, British Columbia, Canada, state‐dependent fragility curves are implemented. The new simulation framework can be used for quasi‐real‐time aftershock hazard and risk assessments and city‐wide post‐event risk management.  相似文献   

2.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper introduces and evaluates a methodology for the aftershock seismic assessment of buildings taking explicitly into account residual drift demands after the mainshock (i.e., postmainshock residual interstory drifts, RIDRo). The methodology is applied to a testbed four‐story steel moment‐resisting building designed with modern seismic design provisions when subjected to a set of near‐fault mainshock–aftershock seismic sequences that induce five levels of RIDRo. Once the postmainshock residual drift is induced to the building model, a postmainshock incremental dynamic analysis is performed under each aftershock to obtain its collapse capacity and its capacity associated to demolition (i.e., the capacity to reach or exceed a 2% residual drift). The effect of additional sources of stiffness and strength (i.e., interior gravity frames and slab contribution) and the polarity of the aftershocks are examined in this study. Results of this investigation show that the collapse potential under aftershocks strongly depends on the modeling approach (i.e., the aftershock collapse potential is modified when additional sources of lateral stiffness and strength are included in the analytical model). Furthermore, it is demonstrated that the aftershock capacity associated to demolition (i.e., the aftershock collapse capacity associated to a residual interstory drift that leads to an imminent demolition) is lower than that of the aftershock collapse capacity, which mean that this parameter should be a better measure of the building residual capacity against aftershocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Two felt moderate-sized earthquakes with local magnitudes of 4.9 on October 11, 1999 and 4.3 on November 08, 2006 occurred southeast of Beni Suef and Cairo cities. Being well recorded by the digital Egyptian National Seismic Network (ENSN) and some regional broadband stations, they provided us with a unique opportunity to study the tectonic process and present-day stress field acting on the northern part of the Eastern Desert of Egypt. In this study, we analyze the main shocks of these earthquakes and present 15 well recorded aftershocks (0.9 ≤ ML ≤ 3.3) which have small errors on both horizontal and vertical axes. The relocation analysis using the double difference algorithm clearly reveals a NW trending fault for the 1999 earthquake. The spatial distribution of its aftershocks indicates a propagation of rupture from the SW towards the NW along a fault length ~5 km dipping nearly ~40°SW. We also determined the focal mechanisms of the two main shocks by two methods (polarities and amplitudes ratios of P, SV and SH and regional waveform inversion). Our results indicate a normal faulting mechanism with a slight shear component for the first event, while pure normal faulting for the second one. The spatial distribution of the 1999 aftershocks sequence along with the retrieved focal mechanism confirmed the NW plane as the true fault plane. While for the 2006 event, the few aftershocks do not reveal any fault geometry; its focal mechanism indicated a pure normal fault nearly trending WNW-ESE that corresponds more likely to the extension of the 1999 earthquake fault. The seismicity distribution between the two earthquake sequences reveals a noticeable gap that may be a site of a future event. The NNE-SSW extensional stress indicated by the mechanisms of these events is in agreement with the regional stress field and the rifting of the northern Red Sea in its northern branches (Gulf of Suez and Gulf of Aqaba). The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated and compared based on both the regional waveform inversion and the displacement spectra and interpreted in the context of the tectonic setting. The obtained results imply a reactivation of the pre-exiting NW-SE faults as a result of extensional deformation from the northern Red Sea-Gulf of Suez rifts.  相似文献   

6.
Elastic response spectra that take into account the effects of soil-structure interaction on soft soils are developed. The response spectra are calculated utilizing a 3 DOF system including deformations of the superstructure and foundation. The equations of motion of the system are solved using direct integration under normalized earthquake records. Statistical processing of the results is implemented resulting in response spectra for "short and dense buildings with low interaction", "short and dense buildings with high interaction", "tall and light buildings with low interaction" and "tall and light buildings with high interaction". The resulting response spectra are smoothed and discussed.  相似文献   

7.
8.
The Aftershock sequence of Chamoli earthquake (M w 6.4) of 29 March 1999 is analyzed to study the fractal structure in space, time and magnitude distribution. The b value is found to be 0.63 less than which is usually observed worldwide and in the Himalayas. This indicates that the numbers of smaller earthquakes are relatively less than the larger ones. The spatial correlation is 1.64, indicating that events are approaching a two-dimensional region meaning that the aftershocks are uniformly distributed along the trend of the aftershock zone. Temporal correlation is 0.86 for aftershocks of M 1, indicating a nearly continuous aftershock activity. However, it is 0.5 for aftershocks of M 1.75, indicating a non continuous aftershock activity. From the assessment of slip on different faults it is inferred that 70% displacement is accommodated on the primary fault and the remainder on secondary faults.  相似文献   

9.
矩形高层建筑扭转动力风荷载解析模型   总被引:4,自引:0,他引:4  
本文通过研究不同长宽比、高宽比的矩形棱柱体在边界层风洞中典型攻角下的扭矩,提出了矩形高层建筑扭矩功率谱密度、均方根扭矩系数和Strouhal数的经验公式,并对相干函数作了一定的探讨,建立了完整的扭转动力风荷载解析模型。该模型和试验结果吻合较好,证明它是合理有效的,可在此基础上建立高层建筑扭转动力响应频域计算方法。  相似文献   

10.
Riassunto L'A. espone in forma sintetica i risultati di uno studio sulle caratteristiche delle perturbazioni ionosferiche in Buenos Aires. Durante i mesi invernali la fase positiva delle perturbazioni nella regione F2 appare notevolmente ampia e si nota una stretta correlazione negativa fra la foF2 e la componente orizzontale del campomagnetico terrestre.
Summary The Author reports synthetically the results of an investigation concerning the characteristics of ionospheric storms at Buenos Aires. In winter, the positive phase of the storms in the F2 region appears considerably large, and a close negative correlation is observed between the foF2 and the horizontal component of the terrestrial magnetic field.
  相似文献   

11.
Simplified approaches for examining structural system response under sequential earthquake and tsunami loading are helpful for understanding response trends. To aid understanding, nonlinear (constant‐ductility) response spectra are developed for elastoplastic single degree of freedom systems subjected to seismic loads followed by hydrodynamic tsunami loads. The forcing function is composed of long‐duration earthquake motion concatenated with a range of tsunami hydrodynamic forces that are proportional to the pseudo‐spectral acceleration produced by the earthquake motion. The constant‐ductility spectra are thus constructed for scenarios where the loading imposed by one hazard is not dominant over the other. The spectra and basic intensity measures indicate that the amplification of response for sequential earthquake and tsunami loading over the earthquake only case is most significant for systems with long natural periods and high‐ductility capacity under seismic loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
2007年9月12日印尼苏门答腊发生了8.5级地震,9月13日其西北边又发生了8.3级地震,震后在附近还发生了一系列6级以上强震。该文依次计算了苏门答腊8.5级地震后各次地震前其所在主破裂面的库仑破裂应力变化。结果表明,2007年苏门答腊8.5级地震的后续强震都发生在库仑破裂应力显著增加区,其应力变化值均大于0.01 MPa,即后续强震可能都是被触发的。  相似文献   

13.
Introduction The displacement field produced by earthquake can be measured on the Earth surface. The displacement field variation with time can be used to study lots of geodynamics parameters such as the Earth′s viscosity structure (Nur and Mavko, 1974; Sun et al, 1994; Deng et al, 1998), after-slip distribution (Shen et al, 1994; Reilinger et al, 2000), etc. Furthermore, earthquake also pro-duces lots of aftershocks, which have nearly the same focal mechanism as the main shock (e.g. Hard…  相似文献   

14.
兰德斯地震断层面及其附近余震产生的位移场研究   总被引:5,自引:1,他引:4       下载免费PDF全文
根据兰德斯(Landers)地震断层面及其附近余震目录计算这些余震产生的位移场, 并与根据兰德斯地震破裂面滑动分布计算的主震产生的位移场进行对比. 结果表明, 断层面及其附近余震产生位移场的方向与主震大体一致, 余震破裂总体来看是继承性的. 余震产生的位移场达厘米量级, 足可以被GPS观测所捕获. 在利用地震震后随时间变化位移场研究地球粘性结构、 地震震后滑动分布等地球物理问题时, 扣除余震产生的位移场可以最大限度地减小反演结果的不确定性, 得到符合实际的结果.   相似文献   

15.
In this article, we estimated the alpha parameter of the Priestley–Taylor model under rain‐fed conditions. This study was conducted in an oat crop, from 7 September to 22 October 2009, in a region of subhumid plains (Tandil, Argentina). An energy balance station was installed within the experimental field to monitor its development. The alpha parameter value obtained was 1.41 ± 0.01, which led to an overestimation of the evapotranspiration of just 2% and a relative error in estimating evapotranspiration of 8%. The results suggest that the alpha parameter obtained is adequate in estimating the evapotranspiration of oat crops or similar crops in subhumid plains of Buenos Aires, Argentina. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We studied broadband digital records of the M W = 7.6 Olyutorskii earthquake of April 20, 2006 and its aftershocks at local and regional distances. We have made a detailed analysis of data on peak ground motion velocities and accelerations due to aftershocks based on records of two digital seismic stations, Tilichiki (TLC) and Kamenskoe (KAM). The first step in this analysis was to find the station correction for soil effects at TLC station using coda spectra. The correction was applied to the data to convert them to the reference bedrock beneath the Kamenskoe station. The second step involved multiple linear regression to derive average relationshis of peak amplitude to local magnitude ML and distance R for the Koryak Upland conditions. The data scatter about the average relationshis is comparatively low (0.22–0.25 log units). The acceleration amplitudes for M L = 5, R = 25 km are lower by factors of 2–3 compared with those for eastern Kamchatka, the western US, or Japan. A likely cause of this anomaly could be lower stress drops for the aftershocks.  相似文献   

17.
强余震的灾害评估   总被引:5,自引:0,他引:5  
吴开统  李文喜 《中国地震》1995,11(4):368-373
极震区的烈度分布是由主震和大余震产生的。最重的地震灾区为余震区,其范围可由震级与地震区烈度的统计关系求得。在震级与震中烈度关系中,初期余震的烈度略高于主震,晚期强余震的烈度比主震的低。不同烈度对建筑物的损害程度可通过烈度与损失率曲线进行评估。强余震和后续强震的人口伤亡比主震轻。  相似文献   

18.
Building structures damaged by a seismic event may be exposed to the risk of aftershocks or another event within a certain period. In this paper, the seismic assessment of damaged piloti‐type RC buildings was carried out to evaluate probabilistic retrofitting effects under successive earthquakes. First, a framework to evaluate the effectiveness of retrofitting was proposed, and then the proposed methodology was demonstrated with a structure retrofitted with buckling‐restrained braces (BRBs). For consideration of realistic successive earthquakes, past records measured at the same station were combined. Within the framework, a series of nonlinear time history analyses were performed for an as‐is model subjected to single earthquake, a damaged model subjected to successive earthquakes, and a damaged model retrofitted with BRBs subjected to successive earthquakes. In addition, fragility analysis was systematically applied in the framework for evaluation of effectiveness of the retrofitting strategy. The proposed framework was capable of quantifying the influence of successive earthquakes and evaluating the effectiveness of BRB retrofitting by considering the severity of the first earthquake damage and the hysteresis behavior of the retrofit element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
For almost a decade, a 66‐storey, 280m tall building in Singapore has been instrumented to monitor its dynamic responses to wind and seismic excitations. The dynamic characteristics of the tall building have been investigated via both the finite element method and the experimental modal analysis. The properties of the finite element model have been shown to correlate well with those derived from the data recorded during the ambient vibration tests. During the study period, 21 sets of earthquake ground motions have been recorded at the building site. The basement motions may be divided into three categories based on their predominant frequency components with respect to the building's fundamental frequency. The calibrated three‐dimensional finite element model is employed to simulate the seismic response of the tall building. Correlation analysis of the time histories between the recorded data and the simulated results has been carried out. The correlation analysis results show that the simulated dynamic response time histories match well with those of the recorded dynamic responses at the roof level. The results also show that the simulated maximum response at the roof level is close to the peak response recorded during the earthquakes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号