首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Operative seismic aftershock risk forecasting can be particularly useful for rapid decision‐making in the presence of an ongoing sequence. In such a context, limit state first‐excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance‐based framework for adaptive aftershock risk assessment in the immediate post‐mainshock environment. A time‐dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event‐dependent fragility curves as a function of the first‐mode spectral acceleration for a prescribed limit state is calculated by employing back‐to‐back nonlinear dynamic analyses. An epidemic‐type aftershock sequence model is employed for estimating the spatio‐temporal evolution of aftershocks. The event‐dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic‐type aftershock sequence aftershock hazard. The daily probability of limit state first‐excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the number of aftershocks. As a numerical example, daily aftershock risk is calculated for the L'Aquila 2009 aftershock sequence (central Italy). A representative three‐story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first‐excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Megathrust earthquake sequences, comprising mainshocks and triggered aftershocks along the subduction interface and in the overriding crust, can impact multiple buildings and infrastructure in a city. The time between the mainshocks and aftershocks usually is too short to retrofit the structures; therefore, moderate‐size aftershocks can cause additional damage. To have a better understanding of the impact of aftershocks on city‐wide seismic risk assessment, a new simulation framework of spatiotemporal seismic hazard and risk assessment of future M9.0 sequences in the Cascadia subduction zone is developed. The simulation framework consists of an epidemic‐type aftershock sequence (ETAS) model, ground‐motion model, and state‐dependent seismic fragility model. The spatiotemporal ETAS model is modified to characterise aftershocks of large and anisotropic M9.0 mainshock ruptures. To account for damage accumulation of wood‐frame houses due to aftershocks in Victoria, British Columbia, Canada, state‐dependent fragility curves are implemented. The new simulation framework can be used for quasi‐real‐time aftershock hazard and risk assessments and city‐wide post‐event risk management.  相似文献   

3.
如何分析一个地区在未来地震中的经济损失水平,对于在现阶段采取相应的防震减灾对策有很大的决策参考意义。过去的振害损失预测分析,一般在考虑地震危险性时是有概率水平的,可是在分析震害及经济损失时,没有充分考虑这些因素的概率特征。本文从全概率的公式为基础,建立了区域震害经济损失预测的概率分析模型,综合考虑了地震、场地、结构和当地经济发展水平的影响。进而在对这个模型作一些简化以后,提出了以结构物破坏等级为基础的震害经济损失分析预测方法。此外,本文在如何考虑场地液化等方面也作了分析探讨。  相似文献   

4.
Calculating the limit state (LS) exceedance probability for a structure considering the main seismic event and the triggered aftershocks (AS) is complicated both by the time‐dependent rate of aftershock occurrence and also by the cumulative damage caused by the sequence of events. Taking advantage of a methodology developed previously by the authors for post‐mainshock (MS) risk assessment, the LS probability due to a sequence of mainshock and the triggered aftershocks is calculated for a given aftershock forecasting time window. The proposed formulation takes into account both the time‐dependent rate of aftershock occurrence and also the damage accumulation due to the triggered aftershocks. It is demonstrated that an existing reinforced concrete moment‐resisting frame with infills subjected to the main event and the triggered sequence exceeds the near‐collapse LS. On the other hand, the structure does not reach the onset of near‐collapse LS when the effect of triggered aftershocks is not considered. It is shown, based on simplifying assumptions, that the derived formulation yields asymptotically to the same Poisson‐type functional form used when the cumulative damage is not being considered. This leads to a range of approximate solutions by substituting the fragilities calculated for intact, MS‐damaged, and MS‐plus‐one‐AS‐damaged structures in the asymptotic simplified formulation. The latter two approximate solutions provide good agreement with the derived formulation. Even when the fragility of intact structure is employed, the approximate solution (considering only the time‐dependent rate of aftershock occurrence) leads to higher risk estimates compared with those obtained based on only the mainshock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
城市建构筑物地震损失预测研究   总被引:12,自引:0,他引:12  
本文提出了预测城市建构筑物在不同烈度下地震灾害损失的简易方法。首先分析了影响城市建构筑物抗震能力的3个因素——抗震设防情况、建筑年代和结构类型;然后提出了建构筑物抗震能力指数的概念,并确定了将上述3因素综合成建构筑物抗震能力指数的方法;最后利用“九五”期间所做的大中城市的震害预测结果统计回归出房屋抗震能力指数与地震灾害损失——人员伤亡、经济损失和震后恢复时间的关系。由此可以得到建构筑物在不同烈度下地震灾害损失的简易计算方法。  相似文献   

6.
强震下的水闸结构抗震性能尚待深入研究,结合实际工程案例,运用UC-WCOMD有限元分析软件建立精细化的水闸计算模型,并分别采用Pushover法和时程分析法讨论水闸在强震作用下的抗震性能,结果表明:结合抗震设防目标,采用Pushover分析法评估水闸的抗侧能力,并采用弹塑性时程分析方法进行强震下的抗震性能校核,是值得推荐的研究方法。  相似文献   

7.
Deteriorating highway bridges in the United States and worldwide have demonstrated susceptibility to damage in earthquake events, with considerable economic consequences due to repair or replacement. Current seismic loss assessment approaches for these critical elements of the transportation network neglect the effects of aging and degradation on the loss estimate. However, the continued aging and deterioration of bridge infrastructure could not only increase susceptibility to seismic damage, but also have a significant impact on these economic losses. Furthermore, the contribution of individual aging components to system‐level losses, correlations between these components, and uncertainty modeling in the risk assessment and repair modeling are all crucial considerations to enhance the accuracy and confidence in bridge loss estimates. In this paper, a new methodology for seismic loss assessment of aging bridges is introduced based on the non‐homogeneous Poisson process. Statistical moments of seismic losses can be efficiently estimated, such as the expected value and variance. The approach is unique in its account for time‐varying seismic vulnerability, uncertainty in component repair, and the contribution of multiple correlated aging components. A representative case study is presented with two fundamentally distinct highway bridges to demonstrate the effects of corrosion deterioration of different bridge components on the seismic losses. Using the proposed model, a sensitivity study is also conducted to assess the effect of parameter variations on the expected seismic losses. The results reveal that the seismic losses estimated by explicitly considering the effects of deterioration of bridge components is significantly higher than that found by assuming time‐invariant structural reliability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Studies of recorded ground motions and simulations have shown that deep sedimentary basins can greatly increase the intensity of earthquake ground motions within a period range of approximately 1–4 s, but the economic impacts of basin effects are uncertain. This paper estimates key economic indicators of seismic performance, expressed in terms of earthquake‐induced repair costs, using empirical and simulated seismic hazard characterizations that account for the effects of basins. The methodology used is general, but the estimates are made for a series of eight‐ to 24‐story residential reinforced concrete shear wall archetype buildings in Seattle, WA, whose design neglects basin effects. All buildings are designed to comply with code‐minimum requirements (i.e., reference archetypes), as well as a series of design enhancements, which include (a) increasing design forces, (b) decreasing drift limits, and (c) a combination of these strategies. As an additional reference point, a performance‐based design is also assessed. The performance of the archetype buildings is evaluated for the seismic hazard level in Seattle according to the 2018 National Seismic Hazard Model (2018 NSHM), which explicitly considers basin effects. Inclusion of basin effects results in an average threefold increase in annualized losses for all archetypes. Incorporating physics‐based ground motion simulations to represent the large‐magnitude Cascadia subduction interface earthquake contribution to the hazard results in a further increase of 22% relative to the 2018 NSHM. The most effective of the design strategies considered combines a 25% increase in strength with a reduction in drift limits to 1.5%.  相似文献   

10.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper experimentally investigates the application of damage avoidance design (DAD) philosophy to moment‐resisting frames with particular emphasis on detailing of rocking interfaces. An 80% scale three‐dimensional rocking beam–column joint sub‐assembly designed and detailed based on damage avoidance principles is constructed and tested. Incremental dynamic analysis is used for selecting ground motion records to be applied to the sub‐assembly for conducting a multi‐level seismic performance assessment (MSPA). Analyses are conducted to obtain displacement demands due to the selected near‐ and medium‐field ground motions that represent different levels of seismic hazard. Thus, predicted displacement time histories are applied to the sub‐assembly for conducting quasi‐earthquake displacement tests. The sub‐assembly performed well reaching drifts up to 4.7% with only minor spalling occurring at rocking beam interfaces and minor flexural cracks in beams. Yielding of post‐tensioning threaded bars occurred, but the sub‐assembly did not collapse. The externally attached energy dissipators provided large hysteretic dissipation during large drift cycles. The sub‐assembly satisfied all three seismic performance requirements, thereby verifying the superior performance of the DAD philosophy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A probabilistic representation of the entire ground‐motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure‐specific part requiring performance assessment for a given value of the IM, and the site‐specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground‐motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced‐concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A set of 3D physics‐based numerical simulations (PBS) of possible earthquakes scenarios in Istanbul along the North Anatolian Fault (Turkey) is considered in this article to provide a comprehensive example of application of PBS to probabilistic seismic hazard (PSHA) and loss assessment in a large urban area. To cope with the high‐frequency (HF) limitations of PBS, numerical results are first postprocessed by a recently introduced technique based on Artificial Neural Networks (ANN), providing broadband waveforms with a proper correlation of HF and low‐frequency (LF) portions of ground motion as well as a proper spatial correlation of peak values also at HF, that is a key feature for the seismic risk application at urban scale. Second, before application to PSHA, a statistical analysis of residuals is carried out to ensure that simulated results provide a set of realizations with a realistic within‐ and between‐event variability of ground motion. PBS results are then applied in a PSHA framework, adopting both the “generalized attenuation function” (GAF) approach, and a novel “footprint” (FP)‐based approach aiming at a convenient and direct application of PBS into PSHA. PSHA results from both approaches are then compared with those obtained from a more standard application of PSHA with empirical ground motion models. Finally, the probabilistic loss assessment of an extended simplified portfolio of buildings is investigated, comparing the results obtained adopting the different approaches: (i) GMPE, (ii) GAF, and (iii) FP. Only FP turned out to have the capability to account for the specific features of source and propagation path, while preserving the proper physically based spatial correlation characteristics, as required for a reliable loss estimate on a building portfolio spatially distributed over a large urban area.  相似文献   

14.
The objective of the study presented in this paper is to investigate the effects of masonry infills on the shear demand and failure of columns for the case when reinforced concrete frames with such infills are modeled by means of simplified nonlinear models that are not capable of the direct simulation of these effects. It is shown that an approximate simulation of the shear failure of columns can be achieved through an iterative procedure that involves pushover analysis, post‐processing of the analysis results using limit‐state checks of the components, and model adaptation if shear failure of columns is detected. The fragility parameters and the mean annual frequency of limit‐state exceedance are computed on the basis of nonlinear dynamic analysis by using an equivalent SDOF model. The proposed methodology is demonstrated by means of two examples. It was shown that the strength of the four‐story and seven‐story buildings and their deformation capacity are significantly overestimated if column shear failure due to the effects of masonry infills is neglected, whereas the mean annual frequency of limit‐state exceedance for the analyzed limit states is significantly larger than that estimated for the case if the shear failure of columns is neglected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Predictors of seismic structural demands (such as inter‐storey drift angles) that are less time‐consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square‐root‐of‐sum‐of‐squares (SRSS) rule by taking a first‐mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post‐elastic first‐mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single‐degree‐of‐freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third‐mode response for long‐period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Expected annual loss (EAL), which can be expressed in dollars, is an effective way of communicating the seismic vulnerability of constructed facilities to owners and insurers. A simplified method for estimating EAL without conducting time‐consuming non‐linear dynamic analyses is presented. Relationships between intensity measures and engineering demand parameters resulting from a pushover analysis and a modified capacity‐spectrum method are combined with epistemic and aleatory uncertainties to arrive at a probabilistic demand model. Damage measures are established to determine thresholds for damage states from which loss ratios can be defined. Financial implications due to damage can then be quantified in the form of EAL by integrating total losses for all likely earthquake scenarios. This rapid loss estimation method is verified through the computationally intensive incremental dynamic analysis, with the results processed using a distribution‐free methodology. To illustrate the application of the proposed method, the seismic vulnerability of two highway bridge piers is compared; one bridge is traditionally designed for ductility while the other is based on an emerging damage avoidance design (DAD) philosophy. The DAD pier is found to have a clear advantage over the conventional pier; the EAL of the DAD pier is less than 20% of its ductile counterpart. This is shown to be primarily due to its inherent damage‐free behaviour for small to medium earthquake intensities, whose contribution to EAL is significantly more than that of very rare events. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A method is established to identify critical earthquake ground motions that are to be used in physical testing or subsequent advanced computational studies to enable seismic performance to be assessed. The ground motion identification procedure consists of: choosing a suitable suite of ground motions and an appropriate intensity measure; selecting a computational tool and modelling the structure accordingly; performing Incremental Dynamic Analysis on a non‐linear model of the structure; interpreting these results into 50th (median) and 90th percentile performance bounds; and identifying the critical ground motions that are close to these defining probabilistic curves at ground motion intensities corresponding to the design basis earthquake and the maximum considered earthquake. An illustrative example of the procedure is given for a reinforced concrete highway bridge pier designed to New Zealand specifications. Pseudodynamic tests and finite element based time history analyses are performed on the pier using three earthquake ground motions identified as: (i) a Design Basis Earthquake (10% probability in 50 years) with 90 percent confidence of non‐exceedance; (ii) a Maximum Considered Event (2% probability in 50 years) representing a median response; and (iii) a Maximum Considered Event representing 90 percent confidence of non‐exceedance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The non‐stationary Functional Series time‐dependent autoregressive moving average (TARMA) modelling and simulation of earthquake ground motion is considered. Full Functional Series TARMA models, capable of modelling both resonances and antiresonances, are examined for the first time via a novel mixed parametric/non‐parametric estimation scheme, and critical comparisons with pure TAR and recursive ARMA (RARMA)‐recursive maximum likelihood (RML) adaptive filtering type modelling are made. The study is based upon two California ground motion signals: a 1979 El Centro accelerogram and a 1994 Pacoima Dam accelerogram. A systematic analysis, employing various functional subspaces and model orders, leads to two Haar function based models: a TARMA(2,4)8 model for the El Centro case and a TARMA(6,2)10 model for the Pacoima Dam case. Both models are formally validated and their simulation (synthesis) capabilities are demonstrated via Monte Carlo experiments focusing on important time domain signal characteristics. The Functional Series TAR/TARMA models are shown to achieve parsimony, as well as superior accuracy and simulation capabilities, over their RARMA counterparts. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号