首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study assesses the 3D amplification effects in shallow basins and quantifies the effects of site‐city interaction (SCI) on high‐rise buildings. A regional‐scale 3D spectral element simulation is conducted on the Tuen Mun‐Yuen Long basin, which contains multiple subbasins with heterogeneous and nonlinear soil profiles, while 3D city models with various building layouts are fully integrated into the basin model for our SCI study. We found a good correlation between spectral amplification factors and soil depths. Site response is significantly amplified at basin edges and centers due to surface waves generated at basin edges and the focusing effects stemming from 3D basin geometry. Transfer functions of 3D basins can be up to fourfold at fundamental frequencies as compared to 1D response, and further amplifications occur at high frequencies due to surface waves. In the SCI simulations, we observe wave trapping in the open space amid buildings resulting in energy concentration and up to twofold PGA amplifications. The wave trapping effect diminishes as the space between buildings increase beyond their range of influence (~100 m). The SCI analyses show that destructive kinetic energy in superstructures increases 28% in one horizontal direction but decreases 22% in the other. Our study concluded that, 1D site response analysis can significantly underestimate the seismic demand in shallow basins. Site‐city interaction of high‐rise buildings increases the short‐period spectra of ground motions, leading to an increase in their story accelerations by up to 50% and to a substantial decrease in the seismic safety of short structures in their vicinity.  相似文献   

2.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

3.
建筑群震害评估计算对城市区域地震损失评估和震后快速援助救灾有着重要意义。考虑到地震中建筑物相互作用对震害的影响,进行考虑结构间相互作用的区域建筑群震害评估计算。在已有的基于结构—土—结构动力相互作用(SSSI)分析的简化离散模型基础上,扣除基础转动对输出响应的影响,引入基础上部建筑结构非线性多自由度模型,得到考虑SSSI的简化的非线性多自由度离散模型,建立考虑SSSI的区域建筑群震害评估方法。以四川大学望江校区的建筑群在汶川地震中的震害评估为例,采用该方法对该校区建筑群在汶川地震中的震害进行评估计算。同时,也对未考虑SSSI情况下的该校区建筑群震害进行计算。运用HAZUS对建筑群在汶川地震中的震害进行计算。通过对比分析实际震害调查数据、HAZUS震害计算结果和本文建筑群震害计算结果可知,相比HAZUS震害计算结果,本文建筑群震害计算结果更接近实际震害调查数据;与未考虑SSSI的建筑群震害计算结果相比,考虑SSSI的建筑群震害计算结果精确度更高,更能反映建筑群的实际震害情况。  相似文献   

4.
地震对区域建筑的破坏力对震后应急决策有着重要意义.为满足地震应急管理部门及时了解地震破坏力的迫切需求,充分利用现有强震动台网的记录数据,清华大学等13家单位共同编制了T/SSC 1—2021《基于强震动记录的地震破坏力评估》标准.标准是在国内外100余次基于强震动的地震破坏力评估的成功经验上制定的.标准基于强震动记录和...  相似文献   

5.
On 22 February 2011, Christchurch City experienced a destructive magnitude (Mw) 6.2 aftershock following the main event of magnitude (Mw) 7.1 on the 4 September 2010. Severe damage was inflicted on the building stock, particularly within the central business district (CBD) of Christchurch. The strong motion stations around the CBD region and extensive building damage survey information from the Christchurch City Council provided a unique opportunity to calibrate a theoretical regional vulnerability assessment model developed and refined to be applicable for New Zealand (NZ) buildings. In this study, data from the building safety evaluation survey conducted by Christchurch City Council are synthesised and processed to extract details on building typologies in the CBD region and the colour tagging assigned to each building depending on the degree of damage. A displacement‐based framework is used to carry out vulnerability assessment for Christchurch buildings to estimate damage sustained under the recorded ground motions in the February event. As the damage survey indicators were ‘colour tags’, a mapping scheme has been explored to link the observed colour tagging damage statistics with ‘drift‐based damage limit states’ adopted in the theoretical approach. A sensitivity analysis is carried out to calibrate the mapping scheme, which can provide estimates of proportions of buildings likely to fall in different colour regimes when used in conjunction with the proposed vulnerability assessment methodology. It is shown that the methodology is reasonably robust, thereby increasing the confidence in using this approach to predict seismic vulnerability of building stock in NZ. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Structural impact between adjacent buildings may induce local and, in some extreme cases, severe damage, especially in the case of seismically isolated buildings. This study parametrically investigates in the three‐dimensional domain the effect of pounding on the peak response of base‐isolated buildings, which are simulated as nonlinear three‐dimensional multi‐degree‐of‐freedom systems. Firstly, it is shown that considering unidirectional, instead of bidirectional, excitations may lead to underestimation of the base drift demands. Subsequently, the peak responses of seismically isolated buildings utilizing lead rubber bearings are studied while varying important parameters, such as the incidence angle of seismic excitations, the available seismic clearance, and mass eccentricities, under the action of bidirectional horizontal excitations. A large number of numerical simulations are performed using a specially developed software that implements an efficient approach to model impacts, taking into account arbitrary locations of contact points. It is found that the peak interstory drift ratio is significantly influenced by the directionality of the ground motion. Therefore, the seismic performance of structures should ideally be assessed examining the peak structural response while bidirectional ground motions are imposed at various incident angles. Furthermore, it is also observed that the interstory drift ratios increase while decreasing the available gap size, up to a certain value. Finally, the parametric analyses indicate that the effects of impact are more severe for structures with mass eccentricities, and in which case, the estimation of the critical incidence angle becomes more laborious. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this paper is to adjust behaviour models for each class of structure for vulnerability assessment by using ambient vibration. A simple model based on frequencies, mode shapes and damping, taken from ambient vibrations, allows computation of the response of the structures and comparison of inter‐storey drifts with the limits found in the literature for the slight damage grade, considered here as the limit of elastic behaviour. Two complete methodologies for building fragility curves are proposed: (1) using a multi‐degree of freedom system including higher modes and full seismic ground‐motion and (2) using a single‐degree of freedom model considering the fundamental mode f0 of the structure and ground‐motion displacement response spectra SD(f0). These two methods were applied to the city of Grenoble, where 60 buildings were studied. Fragility curves for slight damage were derived for the various masonry and reinforced concrete classes of buildings. A site‐specific earthquake scenario, taking into account local site conditions, was considered, corresponding to an ML = 5.5 earthquake at a distance of 15 km. The results show the benefits of using experimental models to reduce variability of the slight damage fragility curve. Moreover, by introducing the experimental modal model of the buildings, it is possible to improve seismic risk assessment at an overall scale (the city) or a local scale (the building) for the first damage grade (slight damage). This level of damage, of great interest for moderate seismic‐prone regions, may contribute to the seismic loss assessment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   

12.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology is introduced to assess the post‐earthquake structural safety of damaged buildings using a quantitative relationship between observable structural component damage and the change in collapse vulnerability. The proposed framework integrates component‐level damage simulation, virtual inspection, and structural collapse performance assessment. Engineering demand parameters from nonlinear response history analyses are used in conjunction with component‐level damage simulation to generate multiple realizations of damage to key structural elements. Triggering damage state ratios, which describe the fraction of components within a damage state that results in an unsafe placard assignment, are explicitly linked to the increased collapse vulnerability of the damaged building. A case study is presented in which the framework is applied to a 4‐story reinforced concrete frame building with masonry infills. The results show that when subjected to maximum considered earthquake level ground motions, the probability of experiencing enough structural damage to trigger an unsafe placard, leading to building closure, is more than 2 orders of magnitude higher than the risk of collapse.  相似文献   

14.
Rome is affected by earthquakes associated to three different seismogenic districts: the Central Apennines area, the Colli Albani volcanic area and the Roman area. The major effects were exclusively due to Apennine seismicity and reached in some cases felt intensities up to VII–VIII degree (MCS scale). The predominant role in the damage distribution seems to be played by the local geological conditions. The historical centre of the city is characterized by the presence of two geomorphologic domains: the alluvial plain of Tiber river and the topographic relieves of Roman Hills, where tradition indicates the first site of the city foundation. In particular, the right river side is characterized by the outcropping of the regional bedrock along the Monte Mario–Gianicolo ridge, while the eastern relieves are the remnants of the Sabatini and Albani volcanic plateau, deeply eroded by the Tiber river and its tributaries during the last glacial low-stand (Würm). These domains are characterized by a large difference in seismic response, due to the high impedance contrast between Holocene coarse deposits filling the Tiber Valley and sedimentary and volcanic Plio–Pleistocene units. Seismic damage observed in 150 monuments of downtown Rome was indicating a significant concentration on alluvial recent deposits. This result was confirmed by the geographical distribution of conservation and retrofitting activities subsequent to main earthquakes, mostly related to local geological conditions. The cases of Marcus Aurelius' Column and Colosseum confirmed the influence of the Holocene alluvial network in local seismic response. During 2500 years of history, the monuments of Rome have `memorized' the seismic effects of historical earthquakes. In some cases, the integration of historical and geological research and macroseismic observations may provide original and useful indications to seismologists to define the seismic response of the city. Local site effects represent a serious threat for historical buildings in Rome and in other historical towns with similar cultural heritage and geological characteristics, as in the Mediterranean region, even in areas that are not affected by a local seismic activity.  相似文献   

15.
The evaluation of the out‐of‐plane behaviour of unreinforced walls is one of the most debated topics in the seismic assessment of existing masonry buildings. The discontinuous nature of masonry and its interaction with the remainder of the building make the dynamic modelling of out‐of‐plane response troublesome. In this paper, the results of a shaking table laboratory campaign on a tuff masonry, natural scale, U‐shaped assemblage (façade adjacent to transverse walls) are presented. The tests, excited by scaled natural accelerograms, replicate the behaviour of external walls in existing masonry buildings, from the beginning of rocking motion to overturning. Two approaches have been developed for modelling the out‐of‐plane seismic behaviour: the discrete element method and an SDOF analytic model. Both approaches are shown to be capable of reproducing the experimental behaviour in terms of maximum rotation and time history dynamic response. Finally, test results and numerical time history simulations have been compared with the Italian seismic code assessment procedures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Bogotá, the capital city of Colombia, is mostly located on a lacustrine soil deposit surrounded by hills in a central plateau of the eastern cordillera of the Colombian Andes. This highly populated urban area is exposed to a significant seismic hazard from local and regional fault systems. In addition, the potential ground motion amplification during earthquakes due to the presence of soft soil deposits, along with the effects of the surface and subsurface topography, can strongly influence the seismic hazard and consequently the seismic risk to the city. This study aims to develop a physics‐based framework to generate synthetic ground records that can help better understand the seismic response of the basin and other amplification effects during strong earthquake shaking in the region, and to incorporate these effects into the estimation of seismic risk. To this end, a set of simulations were first conducted on Hercules, the wave propagation octree‐based finite element simulator developed by the Quake Group at Carnegie Mellon University, to identify the impacts of hypothetical strong earthquakes scenarios. Then, the results from these simulations were integrated with the exposure and vulnerability information previously developed for the main building constructions in the city to assess the seismic risk in the region under different conditions of analysis. Results from this more detailed model are compared with previously published results from simplified models. Sensitivity analyses help identify critical aspects that should be considered in the future to improve the seismic risk assessment of infrastructure.  相似文献   

17.
The seismic vulnerability assessment of old masonry buildings is essential not only to buildings with recognised historical and heritage value but also to ordinary residential masonry buildings. This paper approaches the seismic vulnerability assessment of masonry buildings by applying a simplified methodology to the old city centre of Seixal in Portugal. The methodology adopted in this study was based on a vulnerability index used for the evaluation of damage and the study of loss scenarios on a large scale. Over 500 buildings were assessed using this methodology, and the results were analysed using an integrated Geographical Information System tool. The integration of the vulnerability and loss results could allow city councils or regional authorities to plan interventions based on a global view of the site under analysis, leading to more accurate and comprehensive risk mitigation strategies that support the requirements of safety and emergency planning.  相似文献   

18.
Within the last decades, simplified methods alternative to dynamic nonlinear analysis have been developed to estimate the seismic performance of structures toward a performance‐oriented design. Considering drift as the main parameter correlated with structural damage, its estimation is of main importance to assess the structural performance. While traditional force‐based design deals with calibrated force reduction factors based on the expected structural ductility, other methods are based on the definition of a viscous damping factor defined as a function of the expected energy dissipated by the structure. An example is the capacity spectrum method. This method can be applied even without any a priori calibration or designer arbitrariness. This allows considering several peculiarities of the seismic behavior of precast structures, which may be influenced by nontraditional hysteresis of connections and members, interaction with the cladding panels, Pδ effects, etc. The paper aims at verifying the soundness and accuracy of this method through the comparison of its predictions against the results of cyclic and pseudodynamic tests on precast structures, including single‐ and multistory buildings either stiff or flexible, obtained on full‐scale building prototypes tested within the framework of recent research projects (namely, “Precast Structures EC8,” “Safecast,” and “Safecladding”). Two simple methodologies of determination of the equivalent viscous damping from a force‐displacement cycle, based on the dissipated energy in relation to 2 different estimates of the elastic strain energy, are addressed and compared. Comments on the possible use of this procedure for the estimation of the seismic performance of precast structures are provided.  相似文献   

19.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Megathrust earthquake sequences, comprising mainshocks and triggered aftershocks along the subduction interface and in the overriding crust, can impact multiple buildings and infrastructure in a city. The time between the mainshocks and aftershocks usually is too short to retrofit the structures; therefore, moderate‐size aftershocks can cause additional damage. To have a better understanding of the impact of aftershocks on city‐wide seismic risk assessment, a new simulation framework of spatiotemporal seismic hazard and risk assessment of future M9.0 sequences in the Cascadia subduction zone is developed. The simulation framework consists of an epidemic‐type aftershock sequence (ETAS) model, ground‐motion model, and state‐dependent seismic fragility model. The spatiotemporal ETAS model is modified to characterise aftershocks of large and anisotropic M9.0 mainshock ruptures. To account for damage accumulation of wood‐frame houses due to aftershocks in Victoria, British Columbia, Canada, state‐dependent fragility curves are implemented. The new simulation framework can be used for quasi‐real‐time aftershock hazard and risk assessments and city‐wide post‐event risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号