首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 28-m-long section situated on the coast of the Arctic Ocean, Russia (74°N, 113°E) was extensively sampled primarily for the purpose of magnetostratigraphic investigations across the Jurassic/Cretaceous boundary. The section consists predominantly of marine black shales with abundant siderite concretions and several distinct siderite cemented layers. Low-field magnetic susceptibility (k) ranges from 8 × 10− 5 to 2 × 10− 3 SI and is predominantly controlled by the paramagnetic minerals, i.e. iron-bearing chlorites, micas, and siderite. The siderite-bearing samples possess the highest magnetic susceptibility, usually one order of magnitude higher than the neighboring rock. The intensity of the natural remanent magnetization (M0) varies between 1 × 10− 5 and 6 × 10− 3 A/m. Several samples possessing extremely high values of M0 were found. There is no apparent correlation between the high k and high M0 values; on the contrary, the samples with relatively high M0 values possess average magnetic susceptibility and vice versa. According to the low-field anisotropy of magnetic susceptibility (AMS), three different groups of samples can be distinguished. In the siderite-bearing samples (i), an inverse magnetic fabric is observed, i.e., the maximum and minimum principal susceptibility directions are interchanged and the magnetic fabric has a distinctly prolate shape. Triaxial-fabric samples (ii), showing an intermediate magnetic fabric, are always characterized by high M0 values. It seems probable that the magnetic fabric is controlled by the preferred orientation of paramagnetic phyllosilicates, e.g., chlorite and mica, and by some ferromagnetic mineral with anomalous orientation in relation to the bedding plane. Oblate-fabric samples (iii) are characterized by a bedding-controlled magnetic fabric, and by moderate magnetic susceptibility and M0 values. The magnetic fabric is controlled by the preferred orientation of phyllosilicate minerals and, to a minor extent, by a ferrimagnetic fraction, most probably detrital magnetite. Considering the magnetic fabric together with paleomagnetic component analyses, the siderite-bearing, and the high-NRM samples (about 15% of samples) were excluded from further magnetostratigraphic research.  相似文献   

2.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   

3.
Magnetostratigraphic research, undertaken within the past 15 years in the Siwaliks distributed along 400 km of the Sub-Himalaya in central Nepal, has proved that the sediments possess highly reliable hematite-based primary detrital remanent magnetization suitable to determine depositional chronology. In order to bring out the polarity sequences in a common chronological frame, all available data are newly correlated to the latest global magnetic polarity time scale of Cande and Kent (S.C. Cande, D.V. Kent (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–6095). Chronological data presented are referred, in relation to the diverse lithological nomenclature, to the formations whose ages are not constrained by isotopic or paleontologic ages. The age of the sections dated by magnetostratigraphy ranges between 14 and <2 Ma. Sediment accumulation rates average to 32–50 cm kyr−1. Rock-magnetic parameters, e.g. initial susceptibility and isothermal remanent magnetization ratios, allow correlation with an accuracy of up to a few hundred meters among several kilometers thick adjacent sections. Anisotropy of magnetic susceptibility (AMS) data reveal a well-defined fabric contributed to by paramagnetic (k=10−5 to 3×10−4 SI) as well as ferromagnetic minerals (k=3×10−4 to 10−2 SI). AMS ellipsoids are mainly oblate along with some prolate ones and the degree of anisotropy is mostly low (P′<1.2). The magnetic fabric is of pre-folding origin with tilt-corrected sub-vertical magnetic foliation poles. The magnetic lineations do not show parallelism to the expected paleocurrent directions. Rather, sub-parallelism between the clusters of magnetic lineation and the fold axes/bedding strikes/thrust fronts is observed. A superimposed fabric consisting of a sedimentary-compactional and an overprint induced by a mild deformation process is suggested. The latter process was active during, and subsequent to, the deposition in the compressive tectonic setting of the foreland basin. The magnetic lineations for Tinau Khola and Surai Khola sections cluster around N80°W and N88°W respectively, whereas N27°W trend characterizes the Amiliya-Tui area south of Dang. The peak clusters in lineations are probably orthogonal to the true shortening axes. Their variation along the Sub-Himalaya, together with the fold axes or thrust front trends, may be used for accurate tectonic reconstruction. It is especially important when the orthogonality of the latter to the shortening axes may not hold true in the sectors with imbricate fold-and-thrust structures.  相似文献   

4.
Quaternary loess sequences of Argentina, with interbedded loess and buried soils (palaeosols), provide terrestrial records of past climates and environmental conditions. Study of rock magnetic parameters measured over a large area of the Pampean loess seems to indicate that the existing magnetoclimatological models cannot adequately account for the complexities of the Pampean loess.The Chinese loess has been considered as typical, where magnetic properties are largely controlled by pedogenesis. On the other hand, the Siberian loess is an alternative magnetoclimatological model in which palaeosols appear as magnetic lows and the intercalated loess as magnetic highs. Argentine loess is apparently closer to the Siberian model. However, considering the data obtained in Argentina, the situation seems to be more complicated. The higest magnetic values (SIRM and susceptibiliy values) in silty and sandy loess indicate a more efficient entrainment of dense iron oxides particles during stormy dry (glacial) intervals.The parent material shows the highest susceptibility values (>100 × 10−8 m3/kg) while the waterlogged horizons show the lowest ones (below 20 × 10−8 m3/kg). Pedogenesis resulting in the development of BC and B soil horizons of palaeosols in the parent loess produced decreases in susceptibility values and increases in the F factor. This phenomenon occurs at some degree of humidity in which the process of gleying caused the total depletion of both susceptibility and frequency factor. The magnentic data allows consideration of the relevance of major cycles (arid/humid) separated by discontinuities as the main factor favoring one particular behavior of the magnetic parameters. The B horizons of palaeosols developed during an arid cycle will not show a notable difference in the magnetic records from the parent material. In contrast, during humid climate condition the pristine loess can be progresively obliterated by pedogensis through to the extreme situation of gleying.  相似文献   

5.
Tunnel excavation at Äspö Island, Sweden, has caused severe groundwater disturbance, gradually extending deeper into the tunnel as present-day Baltic seawater intrudes through fractures connecting to the surface. However, the paleo-hydrogeochemical conditions have remained in the deep highly saline waters that have avoided mixing. A correlation has been observed between dissolved 4He concentration and Cl ion concentration, measured every two years from 1995 to 2001 at Äspö. Groundwater mixing conditions can be examined by the correlations between 1/Cl, 36Cl/Cl, and 3H concentrations. Subsurface production is responsible for the majority of the 36Cl and excess dissolved 4He of interstitial groundwater in fractures. The secular equilibrium ratio of 36Cl/Cl in rock was theoretically estimated to be (5.05 ± 0.82) × 10−14 based on the neutron flux intensity, a value comparable to the measured 36Cl/Cl ratio in rock and groundwater. The degassing crustal 4He flux was estimated to be 2.9 × 10−8  1.3 × 10−6 (ccSTP/cm2a) using the HTO diffusion coefficient for the Äspö diorite. The 4He accumulation rate ranges from 6.8 × 10−10 (for the in situ accumulation rate) to 7.0 × 10−9 (ccSTP/(gwater · a) considering both 4He in situ production and the degassing flux, assuming 4He is accumulated constantly in groundwater. By comparing the subsurface 36Cl increase with 4He concentrations in groundwater, the 4He accumulation rate was determined from data for groundwater arriving at the secular equilibrium of 36Cl/Cl. The 4He accumulation rate was found to be (1.83 ± 0.72) × 10−8 ccSTP/(gwater · a) without determining the magnitude of degassing 4He flux.  相似文献   

6.
Migration properties characterized by physico-chemical factors such as distribution coefficient (Kd) and diffusion coefficient (De) are of great concern in performance assessment of high-level radioactive waste disposal in a deep geologic environment. These coefficients are normally obtained with different sample geometries using conventional methods, i.e., crushed samples by the batch sorption method for Kd determination and block samples by the through-diffusion method for De. A size dependence on both Kd and De has been reported and an additional correction due to size difference is required to maintain consistency of the data set. A fast method was developed, hereafter referred to as the micro-channel method, to determine both the sorption coefficient (Rd) and De using non-crushed rock sample by adopting the micro-reactor technique. In this method, a radionuclide solution is injected into a micro-channel (20 mm length, 4 mm width, 160 μm depth), which is in contact with a plate-shaped rock sample. A part of the injected radionuclide can diffuse into the rock matrix and/or adsorb on the rock surface and this results in an inlet-outlet concentration difference. A breakthrough curve is easily obtained with a short observation period because the injection amount is extremely small and is comparable to that escaping by diffusion into the matrix. The breakthrough curve is analyzed by a two-dimensional diffusion-advection equation to evaluate Rd and De.In the present study, tritiated water (specific activity, 1.2 × 104 Bq/mL; pH, 6) was injected into the micro-channel, and the breakthrough curve of 3H obtained. A series of experiments was carried out by changing the flow rate of the tritiated water (2.6 × 10−5–7.7 × 10−4 m/s). Rock samples were biotite granite from the Makabe area, Japan. The diffusion coefficient evaluated by least squares fitting to the numerical solutions (De = 1.5 × 10−11 m2/s) agreed well with that obtained by the through-diffusion method (1.3 × 10−11 m2/s). The breakthrough curve of Cs ([Cs] = 1.0 × 10−7 mol/L, pH 6) labeled with 134Cs (specific activity adjusted to 4.9 × 10Bq/mL) was also obtained. A nearly constant Rd value (5.5 × 10−2 m3/kg) was found when the flow rate was less than 2.5 × 10−4 m/s. This implied that the sorption equilibrium is reached and Kd is obtained by the present method. This value was almost identical to Kd obtained by the batch sorption method (5.0 × 10−2 m3/kg), but the testing period was very different; 1 day and 7 days, respectively. It is concluded that application of the micro-channel method provided advantages when compared with the conventional methods.  相似文献   

7.
Biogenic amino acids, taken as representative of organic matter, were analyzed to determine the apparent degradation rate constant in boreal terrestrial sediment. Age determination using 14C dating gave two rate constants: the initial degradation rate constant for glycine (kGLY 1), the simplest amino acid, was 1.5 × 10−3 yr−1 (r = 0.97) until about 2200 yr BP. After the inflection point, the rate constant kGLY 2 was 9.1 × 10−5 yr−1 (r = 0.73). The degradation of amino acids in the labile organic matter in the sediment was markedly affected by rapid processes. After the inflection point, the rate constant profiles for sub-surface amino acids were shown to have discontinuous relationships with sediment age. One pattern which emerged in the vertical distribution is that the biogenic amino acid degradation rate constant k was far greater in the labile organic matter phase than that in the refractory organic matter over the past 10,000 years.  相似文献   

8.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

9.
Magnetic fabric and rock magnetism studies were performed on 32 mafic dikes of a Proterozoic dike swarm from the southern São Francisco Craton (SFC; Minas Gerais State, SE Brazil). Magnetic anisotropies were determined by applying anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of remanent magnetization (ARM). The latter was performed imposing both anhysteretic (total (AAR) and partial pAAR)) and isothermal remanence magnetizations (AIRM). Partial anhysteretic remanence anisotropy was performed based on remanent coercivity spectra from a pilot specimen of each site. In most sites, AMS is dominantly carried by ferromagnetic minerals, however, in some sites, the paramagnetic contribution exceeds 70% of bulk susceptibility. Rock magnetism and thin section analysis allow classifying the dikes as non-hydrothermalized and hydrothermalized. Magnetic measurement shows that the mean magnetic susceptibility is usually lower than 5×10−3 (SI). Ti-poor titanomagnetites up to pure magnetite pseudo-single-domain (PSD) grain sizes carry the majority of magnetic fabrics for non-hydrothermalized dikes whereas coarse to fine grained Ti-poor titanomagnetites carry the majority of magnetic fabrics for hydrothermalized dikes.Three primary AMS fabrics are recognized which are coaxial with ARM fabric, except for two dikes, from both non-hydrothermalized and hydrothermalized dikes. Normal AMS fabric surprisingly is not dominant (31%). The parallelism between AMS, pAAR0–30, pAAR30–60 and pAAR60–90 fabrics in the hydrothermalized dikes indicates that magnetic grains formed due to late-stage crystallization or to remobilization of iron oxides due to hydrothermal alteration after dike emplacement have acquired a mimetic fabric coaxial with the primary fabric given by coarse-grained early crystallized Ti-poor titanomagnetites. This fabric is interpreted as magma flow in which the analysis of Kmax inclination permitted the inference that the dikes were fed by horizontal or subhorizontal fluxes (Kmax<30°). Intermediate AMS fabric is the most important (41%) in the investigated swarm. It is interpreted as due to vertical compaction of a static magma column with the minimum stress along the dike strike. ARM determinations for these sites also remained intermediate except for two dikes. In one of them, AIRM fabric resulted in normal AMS fabric while for the other AAR fabric resulted in inverse AMS fabric. A combination of AMS and ARM fabrics suggest that magmatic fabric for both dikes were overprinted by some late local event, probably related to Brasiliano orogenic processes after dike emplacement. InverseInverse AMS fabric is a minority (four dikes). ARM determinations also remained inverse suggesting a primary origin for inverse AMS fabric.  相似文献   

10.
Several methods were evaluated and compared for the estimation of pyrite oxidation rates (POR) in waste rock at Mine Doyon, Quebec, Canada. Methods based on data collected in situ, such as the interpretation of temperature and oxygen concentration profiles (TOP) measured in the waste rock pile and pyrite mass balance (PMB) on solid phase samples were compared with the oxygen consumption measurements (OCM) in closed chamber in the laboratory. A 1-D analytical solution to a gas and heat transport equation used temperature and oxygen profiles (TOP) measured in the pile for the preliminary POR estimates at a site close to the slope of the pile (Site 6) and in the core of the pile (Site 7). Resulting POR values were 1.1 × 10− 9 mol(O2) kg− 1 s− 1 and 1.0 × 10− 10 mol(O2) kg− 1 s− 1 for the slope site and the core site, respectively. Oxidation rates based on pyrite mass balance (PMB) calculations for solid samples were 2.21 × 10− 9 mol(O2) kg− 1 s− 1 and 2.03 × 10− 9 mol(O2) kg− 1 s− 1, respectively, for the same slope and core sites, but the difference between sites was within the error margin. The OCM measurements in the laboratory on fresh waste rock samples yielded higher POR values than field methods, with average oxidation rate of 6.7 × 10− 8 mol(O2) kg− 1 s− 1. However, the OCM results on weathered and decomposed material from the rock stockpile (average oxidation rate 3.4 × 10− 9 mol(O2) kg− 1 s− 1) were consistent with results from the field-based estimates. When POR values based on fresh material are excluded, the remaining POR values for all methods range from 1.0 × 10− 10 to 3.4 × 10− 9 mol(O2) kg− 1 s− 1. The lowest estimated value (1.0 × 10− 10 mol(O2) kg− 1 s− 1) was based on TOP estimates in the interior of the pile where oxygen transport was limited by diffusion from the surface. These results suggest that small-scale OCM laboratory experiments may provide relatively representative values of POR in the zones of waste rock piles in which oxygen transport is not dominated by diffusion.  相似文献   

11.
We resolve the anisotropy of magnetic susceptibility (AMS) axes along fault planes, cores and damage zones in rocks that crop out next to the Dead Sea Transform (DST) plate boundary. We measured 261 samples of mainly diamagnetic dolostones that were collected from 15 stations. To test the possible effect of the iron content on the AMS we analyzed the Fe concentrations of the samples in different rock phases. Dolostones with mean magnetic susceptibility value lower than −4 × 10−6 SI and iron content less than ∼1000 ppm are suitable for diamagnetic AMS-based strain analysis. The dolostones along fault planes display AMS fabrics that significantly deviate from the primary “sedimentary fabric”. The characteristics of these fabrics include well-grouped, sub-horizontal, minimum principal AMS axes (k3) and sub-vertical magnetic foliations commonly defined by maximum and intermediate principal AMS axes (k1 and k2 axes, respectively). These fabrics are distinctive along fault planes located tens of kilometers apart, with strikes ranging between NNW-SSE and NNE-SSW and different senses of motion. The obtained magnetic foliations (k1k2) are sub-parallel (within ∼20°) to the fault planes. Based on rock magnetic and geochemical analyses, we interpret the AMS fabrics as the product of both shape and crystallographic anisotropy of the dolostones. Preferred shape alignment evolves due to mechanical rotation of subordinate particles and rock fragments at the fault core. Preferred crystallographic orientation results from elevated frictional heating (>300 °C) during faulting, which enhances c-axes alignment in the cement-supported dolomite breccia due to crystal-plastic processes. The penetrative deformation within fault zones resulted from the local, fault-related strain field and does not reflect the regional strain field. The analyzed AMS fabrics together with fault-plane kinematics provide valuable information on faulting characteristics in the uppermost crust.  相似文献   

12.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

13.
Water injection experiments were performed in 1997, 2000 and 2003 at the 1800 m borehole near the fracture zone of the 1995 Hyogo-ken Nanbu earthquake. During these experiments, a contraction of about 10− 8–10− 7 was observed with three-component strainmeters at a bottom of the 800 m borehole, 70 m southwest of the 1800 m borehole. We estimated hydraulic properties of the fracture zone near the Nojima fault by using the strain data to investigate a healing of the fault during the postseismic stage. We calculated pore pressure changes due to the water injection using Darcy's equation and obtained strain changes due to the pore pressure changes as elastic deformations of the crust. The calculated strain changes have a nearly agreement with the observed strain changes. Hydraulic conductivity in 1997, 2000 and 2003 was determined to be 0.9 ± 0.2 × 10− 6, 0.8 ± 0.2 × 10− 6 and 0.4 ± 0.1 × 10− 6 m/s, respectively. The reduced hydraulic conductivities in 2000 and 2003 suggest that the fractures had been healing.  相似文献   

14.
A total of 240 three-component recordings from 80 rockbursts, which occurred in various coal mines in the Ostrava-Karviná Coal Basin (Czech Republic) between 1993 and 2005, was used to examine the decrease in maximum particle velocities ui (m/s) with a scaled distance of d = d/√E (m/√J) or d/3√E (m/3√J) and the rate of predominant frequencies of body waves. The energetic span of rockbursts was within the interval of E = 6.2 × 103 − 5.0 × 108 J, while calculated hypocentral distances d of four underground seismic stations varied from 0.6 to 7 km. The slopes b of regression straight lines for the maximum particle velocities ui (m/s) of P- and S-waves in the bilogarithmic scale correspond to the values of − 1.004, − 1.297, − 1.183 and − 1.527. The results of the linear regression are as follows:
Pmax-waves ui = 1.184 × 10− 4 × d− 1.004 (m/s) (square root scaling)
Pmax-waves ui = 3.055 × 10− 3 × d− 1.297 (m/s) (cube root scaling)
Smax-waves ui = 5.280 × 10− 4 × d− 1.183 (m/s) (square root scaling)
Smax-waves ui = 2.397 × 10− 2 × d− 1.527 (m/s) (cube root scaling).
The evaluation of the abovementioned dynamic parameters was based on seismic events data gathered in the database of the regional seismic array, and calculations were carried out either by using special programs applied as part of the automated data processing in the computation center, or by usual linear regression approaches. The aim of the detailed analysis of the maximum particle velocity and predominant frequencies was a) to set up input data from underground seismological observations for laboratory experiments dealing with the comparison of rock mass behaviour under modeled laboratory conditions simulating manifestation of rockbursts, and b) to incorporate particle velocity into the design of support in order to control damage and evident devastation of workings by rockbursts. The investigation of peak particle velocities was based on the recognition that they are the best criterion to assess vibration damage to surface structures and in mines.  相似文献   

15.
Thiosulphate is present in hot springs, streams and thermal pools of the Taupo Volcanic Zone and Ngawha, New Zealand, at concentrations of 1.2 (±1.3) × 10−5 M to 7.05 (±0.12) × 10−4M. Formed as a metastable product of sulphide oxidation, thiosulphate is buffered in the presence of elemental S according to, . Unless all sulphide present has been bacterially oxidised to sulphate, a steady state concentration of thiosulphate is maintained. As a soft base thiosulphate is capable of complexing several transition metals. The thermodynamically predicted speciation of Ag in Champagne Pool, for example, indicates a Ag(S2O3)2−3 activity similar to that of AgCl2 though less than that of Ag(HS)2.  相似文献   

16.
The present study aims to model iron speciation when interacting with natural organic matter. Experimental data for iron speciation were achieved with insolubilized humic acid as an organic matter analogue for 1.8 × 10− 3 M and 1.8 × 10− 4 M iron concentrations and 2–5 pH range. Combining EPR spectroscopy and chemical analysis allowed us to fit NICA-Donnan model parameters for both organic complexation of iron and oxides precipitation.  相似文献   

17.
Dikes of the eastern Troodos ophiolite of Cyprus intruded at slow ocean-spreading axes with dips ranging up to 15° from vertical and with bimodal strikes (now NE–SW and N–S due to post-88 Ma sinistral microplate rotation). Varied dike orientations may represent local stress fields during dike-crack propagation but do not influence the spatial-distributions or orientation-distributions of dikes' magnetic fabrics, nor of their palaeomagnetic signals. Anisotropy of magnetic susceptibility (AMS) integrates mineral orientation-distributions from each of 1289 specimens sampled from dikes at 356 sites over 400 km2 in the eastern Troodos ophiolite of Cyprus. In 90% of dikes, AMS fabrics define a foliation (kMAXkINT) parallel to dike walls and a lineation (kMAX) that varies regionally and systematically. Magma-flow alignment of accessory magnetite controls the AMS with a subordinate contribution from the mafic silicate matrix that is reduced in anisotropy by sea-floor metamorphism. Titanomagnetite has less influence on anisotropy. Occasionally, intermediate and minimum susceptibility axes are switched so as to be incompatible with the kinematically reasonable flow plane but maximum susceptibility (kMAX) still defines the magmatic flow axis. Such blended subfabrics of kinematically compatible mafic-silicate and misaligned multidomain magnetite subfabrics; are rare. Areas of steep magma flow (kMAX plunge ≥ 70°) and of shallow magma-flow alternate in a systematic and gradual spatial pattern. Foci of steep flow were spaced 4 km parallel to the spreading axes and 6 km perpendicular to the spreading axes. Ridge-parallel separation of steep flow suggest the spacing of magma-feeders to the dikes whereas ridge-perpendicular spacing of 6 km at a spreading rate of 50 mm/a implies the magma sources may have been active for 240 Ka. The magma feeders feeding dikes may have been ≤ 2 km in diameter. Stable paleomagnetic vectors, in some cases verified by reversal tests, are retained by magnetite and titanomagnetite. In all specimens, the stable components were isolated by three cycles of low-temperature demagnetization (LTD) followed by ≥ 10 steps of incremental thermal demagnetization (TD). 47% of primary A-components [338.2 /+ 57.2 n = 207, α95 = 3.9; mean TUB = 397 ± 8 °C] are overprinted by a B-component [341.4 /+ 63.5, n = 96, α95 = 8.7; mean TUB = 182 ± 11 °C]. A- and B-components are ubiquitous and shared equally by the N–S and NE–SW striking dikes. A-component unblocking temperatures (TUB) are zoned subparallel to the fossil spreading axis. Their spatial pattern is consistent with chemical remagnetization at some certain off-axis distance determined by sea-floor spreading. A-components indicate less microplate rotation and more northerly palaeolatitudes that are consistent with metamorphic remagnetization after some spreading from the ridge-axis. Thus, their magnetizations are younger than those of the overlying volcanic sequence for which ChRMs are commonly reported as 274 /+ 33 (88 Ma).  相似文献   

18.
A novel experimental cell was developed for in situ measurements of transport phenomena in porous media using Fourier-Transform Infrared (FTIR) Spectroscopy. The technique was employed at ambient pressure in the temperatures range of 11–44 °C to study the H2O → D2O exchange between water-saturated weathered feldspars (bulk porosity of 5–19 vol% for feldspar) from granitic saprolites and a surrounding aqueous liquid. Such measurements are an important step for understanding internal weathering reactions of feldspars in soils and aquifers. Effective diffusion coefficients Deff for water in water-saturated porous feldspars were determined assuming one-dimensional diffusion in a quasi-homogeneous medium. The values of Deff vary from 7.2 × 10−10 to 1.9 × 10−11 m2/s and are 1–2 orders of magnitude lower than the diffusion coefficients (D) of protons and molecular H2O in liquid water. The activation energy for the H2O → D2O exchange process in porous feldspars ranges from 7.8 to 18.8 kJ/mol.The results imply that the effective diffusivity of water is mainly controlled by physical properties of the feldspars like porosity, pore connectivity, pore geometry and distribution. Perthitic feldspars with homogeneous pore distribution in the albitic lamellas have diffusional tortuosity factors X = D/Deff between 3 and 10 while alkali feldspars with inhomogeneously distributed and disconnected pores have much higher X values up to 129. Diffusion anisotropy has been verified for a vein perthite with diffusion perpendicular to the lamellas being faster by 0.3–0.5 log units than within the lamellas. It has to be emphasized that the study is based only on few selected feldspars, including perthitic feldspar, and additional work on samples with different weathering stages is needed to test the importance of the different parameters controlling diffusive transport in the pore system.  相似文献   

19.
Magnetic susceptibility (MS) of surface sediment varies systematically across the Loess Plateau in central China, decreasing exponentially from >200×10−8 m3/kg at the northern margin of the Qinling Shan to ≤30×10−8 m3/kg near the southern margin of the Mu Us Desert. MS correlates highly with loess median grain size (r2=0.79), which decreases south-southeastward across the plateau. It also correlates with mean annual temperature (MAT) and mean annual precipitation (MAP) (r2=0.58 and 0.60, respectively), and with their product MAT×MAP (r2=0.83), which is considered a measure of potential pedogenic activity. Because regional isopleths depicting grain size and the primary meteorological parameters are nearly parallel, it is difficult to determine their relative influence on MS. A simple MS model, based on the observed spatial variation in loess thickness, permits quantitative assessment of the effect of the dust accumulation rate on the MS signal of surface sediment and isolates the likely role of climate in the production of magnetic minerals. The model suggests that 84% of the loess MS variance is dictated by the diluting effect of dust and 10–11% is associated with meteorological factors, primarily precipitation. The observed and modeled relationships support hypotheses that attribute variations in MS in the loess-paleosol succession to varying rates of dust deposition and in situ production of magnetic minerals in the accretionary soils, both of which are controlled by monsoon climate.  相似文献   

20.
In the early morning hours on Wednesday November 08, 2006 at 04:32:10(GMT) a small earthquake of ML 4.1 has occurred at southeast Beni-Suef, approximately 160 km SEE of Cairo, northern Egypt. The quake has been felt as far as Cairo and its surroundings while no casualties were reported. The instrumental epicentre is located at 28.57°N and 31.55°E. Seismic moment is 1.76 E14 Nm, corresponding to a moment magnitude Mw 3.5. Following a Brune model, the source radius is 0.3 km with an average dislocation of 1.8 cm and a 2.4 MPa stress drop. The source mechanism from a first motion fault plane solution shows a left-lateral strike-slip mechanism with a minor dip-slip component along fault NNW striking at 161°, dipping 52° to the west and rake −5°. Trend and plunging of the maximum and minimum principle axes P/T are 125°, 28°, 21°, and 23°, respectively. A comparison with the mechanism of the October, 1999 event shows similarities in faulting type and orientation of nodal planes.Eight small earthquakes (3.0  ML < 5.0) were also recorded by the Egyptian National Seismological Network (ENSN) from the same region. We estimate the source parameters and fault mechanism solutions (FMS) for these earthquakes using displacement spectra and P-wave polarities, respectively. The obtained source parameters including seismic moments of 4.9 × 1012–5.04 × 1015 Nm, stress drops of 0.2–4.9 MPa and relative displacement of 0.1–9.1 cm. The azimuths of T-axes determined from FMS are oriented in NNE–SSW direction. This direction is consistent with the present-day stress field in Egypt and the last phase of stress field changes in the Late Pleistocene, as well as with recent GPS measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号