首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stratigraphic model for carbonate platform evolution in the Dolomites during the late Ladinian-early Carnian is presented. New light on pre-Raibl growth of individual carbonate platforms of the western Dolomites was shed by biostratigraphic data combined with a revised lithostratigraphy. At the Schlern, Langkofel and Sella, the carbonate factory (Upper Schlern Dolomite) remained productive into the lowermost Carnian (Cordevolian = Aon Zone), and caused a levelling-out of the former steep platform-to-basin relief. In the eastern Dolomites, platforms were producing till basal Julian 2 (Austriacum Zone). At the Sella and Langkofel, the sedimentation pattern after deposition of the Upper Schlern Dolomite was strongly influenced by synsedimentary tectonics. A first phase of extensional tectonics led to local fissures, block-tilting, graben structures and breccia deposits. Composition and fabric of the reworked clasts argue for local-source sediments and short transport distances. The extensional structures are sealed by sediments of Lower Carnian age. Two facies belts (Schlernplateau beds and Dürrenstein Dolomite), which interfinger at the western side of the Sella, reflect the shallow marine environment with terrigenous-volcanoclastic input in the western Dolomites. A second generation of breccias at the Sella documents local fracturing of the Dürrenstein and Upper Schlern Dolomite. Depositional environments across the western and eastern Dolomites were largely dependent on differential subsidence. The sediments of early Carnian age on top of the Schlern platform are a few metres thick only, whereas, in the eastern Dolomite, up to 400-m-thick carbonate sediments ('Richthofen reef' and Settsass platform) were deposited. The most incomplete stratigraphic record is present at the Mendel platform in the west, where Ladinian volcanics are unconformably overlain by late Carnian 'Raibl beds'. The increase in sediment thickness towards the eastern Dolomites becomes partly visible at the eastern flank of the Sella platform. Differential subsidence across western and eastern Dolomites caused local fracturing of platform sediments. Synsedimentary extensional tectonics was a significant controlling factor to the lithofacies and thickness variations of early Carnian platform sediments in the Dolomites.  相似文献   

2.
In post-Variscan times the Dolomites underwent a number of tectonic events, which may be summarized as follows: Permian and Triassic rifting phases broke the area into NS trending basins with different degrees of subsidence. A Middle Triassic transpressive event then deformed the region along a N70°E axis, generating flower structures within the basement. Volcano-tectonic domal uplift and subsequent caldera formation occurred at the same time as the Late Ladinian magmatism. Early Jurassic rifting also controlled the subsidence which increased eastward. This long period of deformation was followed by a pre-Neogene (Late Cretaceous-Palaeogene ?) EW (ENE-WSW) compression which generated a W-vergent belt, possibly equivalent to the folded foreland of the Dinaric chain. A 70 km EW section of the Dolomites indicates shortening of at least 10 km. During the Neogene the Dolomites, as far north as the Insubric Lineament, were the innermost part of a S-vergent thrust belt: the basement of the Dolomites was thrust southwards along the Valsugana Line onto the sedimentary cover of the Venetian Prealps for at least 10 km. This caused a regional uplift of 3–5 km. The Valsugana Line and its backthrusts on the northern side of the central Dolomites generated a 60 km wide pop-up in the form of a synclinorium within which the sedimentary cover adapted itself mainly by flexural-slip often forming triangle zones. The shortening linked to this folding is about 5 km with Neogene thrusts faulting and folding pre-existing thrust-planes. On the north-eastern side of the Dolomites, Neogene deformation is apparently more strictly controlled by the transpressive effects of the Insubric Lineament and shortening of the sedimentary cover may be greater than in the central Dolomites. Minor deformation linked to the Giudicarie belt is present in the western Dolomites. The present structure of the Dolomites is thus the result of a number of tectonic events of different significance and different strike. Only a 3-dimensional restoration can unravel the true structure of the Dolomites.  相似文献   

3.
Sector-collapse structures ranging up to 27 km wide with up to 7.7 km bankward erosion (scalloped margins) and linear escarpments occur along the east-north-east-trending, south-facing margins of the Yangtze Platform and Great Bank of Guizhou. Exposure of one of the structures on the rotated limb of a syncline displays the geometry in profile view. Declivities range from 65° to 90° in the upper wall and decrease asymptotically to the toe. Catastrophic collapses of the margins in both platforms occurred during the late Ladinian as constrained by the ages of strata truncated along the margins and the siliciclastic turbidites that onlap collapse structures. Middle Triassic Anisian and Ladinian platform-edge reef facies and platform-interior facies were truncated along both the Yangtze and Great Bank of Guizhou margins. Lower Triassic facies were also truncated along the Great Bank of Guizhou margin. Gravity transport during the main episodes of collapse occurred as mud-rich debris-flows and as mud-free hyper-concentrated flows. Clasts, several to tens of metres and, exceptionally, hundreds of metres across, were transported to the basin. Following collapse, talus, carbonate turbidites and periplatform-mud accumulated at the toe of slope. Shedding of skeletal grains and carbonate mud indicates active carbonate factories at the margin. Preserved sections of the margins demonstrate that the platforms evolved high-relief, accretionary escarpments prior to collapse. High-relief, without buttressing by basin-filling sediments, predisposed the margins to collapse by development of tensile strain and fracturing within the margin due to the lack of confining stress. The linear geometry of margins and active tectonics in the region supports tectonic activity triggering the collapse. Collapse is thus interpreted to have been triggered by fault movement and seismic shock. Comparison with other systems indicates that evolution from high-relief accretion to tectonic collapse of largely lithified margins resulted in large sector-collapse structures and deposition of a coarse, generally mud-poor breccia apron.  相似文献   

4.
In this paper data are presented on the composition of sediments deposited at the toe of slope during progradation or retreat of Triassic carbonate platforms in the Dolomites (Italy). For this purpose a succession was studied from the toe of slope of a Triassic (Carnian) carbonate platform (Picco di Vallendro/Dürrenstein, Dolomites, Italy). The microfacies analysis of selected calciturbidites sequences revealed a reduced input of oncolites and ooids during progradation and an increase in clasts. The main input, however, was derived from the reefs on the platform. Retrogradation of the platform showed an increase of filaments and radiolarians (open ocean biota) as well as carbonate mud and a reduced input of grains that originated within the reefs on the platform. Both during progradation and retrogradation parts of the platform were flooded and could produce excess sediment that could be exported to the surrounding basins. However, the absence of platform interior biota documents that progradation occurred from sediments of the reefal belt, probably during relative sea-level lowstands. Carbonate composition varies systematically with toe-of-slope progradation/retrogradation and, thus, argues for carbonate production as the main driver of the geometries observed at the toe of slope.  相似文献   

5.
Various types of progradation of Triassic carbonate platforms are described from the Dolomites of the Southern Alps. The internal and external geometric relationships are exposed in spectacular natural sections and, moreover, their scale (500–1000 m of thickness) is such that they can be compared with features found in seismic profiles. The different types of progradation are controlled by a number of factors which, normally, interact with each other. These factors include: rate of basinal sedimentation, rate of subsidence, width of the platform, depth of the surrounding basin and eustatic variations of sea-level. Progradation is not a continuous process but episodic. Moments of massive debris input, during which the platform advances, alternate with long periods of negligible progradation, during which basinal sediments accrete and onlap the toe of slope. Upper boundary relationships of the prograding platforms include offlap, toplap and erosional truncation. Lower boundary relationships are horizontal, climbing and descending progradations. A variety of phenomena and circumstances have caused the cessation of progradation of the Triassic platforms. They include volcanism, collapse of margins, drowning (rapid relative rise of sea-level), subaerial exposure (relative fall of sea-level) and, probably, a natural decay of the system. In the Triassic of the Dolomites, two main progradation models can be put forward: in the Ladinian model, progradation took place simultaneously with aggradation (relative rise of sea-level), whereas the characteristic feature of the Carnian model is toplap (relative stillstand of sea-level).  相似文献   

6.
Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50 km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNWSSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22 km and 5.6 km respectively.  相似文献   

7.
The 720-m-thick succession of the Middle Triassic Latemàr Massif (Dolomites, Italy) was used to reconstruct the lagoonal facies architecture of a small atoll-like carbonate platform. Facies analysis of the lagoonal sediments yields a bathymetric interpretation of the lateral facies variations, which reflect a syndepositional palaeorelief. Based on tracing of lagoonal flooding surfaces, the metre-scale shallowing-upward cycles are interpreted to be of allocyclic origin. Short-term sea-level changes led to subaerial exposure of wide parts of the marginal zone, resulting in the development of a tepee belt of varying width. Occasional emergence of the entire lagoon produced lagoon-wide decimetre-thick red exposure horizons. The supratidal tepee belt in the backreef area represented the zone of maximum elevation, which circumscribed the sub- to peritidal lagoonal interior during most of the platform's development. This tepee rim, the subtidal reef and a sub- to peritidal transition zone in between stabilized the platform margin. The asymmetric width of facies belts within individual metre-scale cycles was caused by redistribution processes that reflect palaeowinds and storm paths from the present-day south and west. The overall succession shows stratigraphic changes on a scale of tens of metres from a basal subtidal unit, overlain by three tepee-rich intervals, separated by tepee-poor units composed of subtidal to peritidal facies. This stacking pattern reflects two third-order sequences during the late Anisian to early middle Ladinian.  相似文献   

8.
M. T. HARRIS 《Sedimentology》1993,40(3):383-401
The Latemar reef buildup of the central Dolomites (northern Italy) provides a rare opportunity to examine an in-place Middle Triassic (Upper Anisian to Lower Ladinian) platform margin that is not strongly deformed or dolomitized. The margin lies between the flat lying platform interior and steeply dipping foreslope clinoforms. Across this transition, the depositional profile relates directly to a consistent lateral facies pattern: (1) restricted-biota grainstone of the platform interior, (2) ‘Tubiphytes’-rich boundstone and (3) diverse-biota grainstone that grades into (4) foreslope breccia beds. The boundstone and diverse-biota grainstone facies comprise the platform margin. The boundstone facies consists of a framework of small (< 10 cm) skeletal remains (< 10% by volume) with associated biotic crusts, internal sediments and syndepositional cements. Crusts and cements constitute most of the rock volume and created the boundstone fabric. Biotic crusts exhibit gravity-defying geometries and range from a light grey, ‘structure grumeleuse’ rind to dark grey, micritic laminae. Both cements and biotic crusts occur as redeposited talus in the foreslope talus deposits, indicating a syndepositional origin. The diverse-biota grainstone facies primarily consists of skeletal-peloidal grainstone with a diverse open marine biotic assemblage, in contrast to the restricted biota grainstones of the platform interior that have a low diversity, restricted marine biota. Metre scale hexacoral boundstone and centimetre-scale sponge boundstone and microbial boundstone occur as isolated patches (tens to hundreds of metres apart) within the diverse-biota grainstone facies. The depositional profile, facies zonation and biotic constituents all indicate that the Latemar buildup had a shallow water reef margin, in contrast to previous interpretations that these were upper slope reefs. The syndepositional biotic crusts and inorganic cementation played key roles in stabilizing the boundstone fabric to form a wave-resistant reef fabric.  相似文献   

9.
The depositional architecture and the geometric relationships between platform-slope deposits and basinal sediments along with paleontological evidence indicate the time interval of the younger Anisian Reitziites reitzi ammonoid zone to largely represent the main stage of platform aggradation at the Cernera and Bivera/Clapsavon carbonate platforms. Published and new U-Pb age data of zircons from volcaniclastic layers bracketing the stratigraphic interval of platform growth constrain the duration of platform evolution to a time span shorter than 1.8±0.7m.y., probably in the order of 0.5-1m.y., reflecting fast rates of vertical platform aggradation exceeding 500 m/m.y. In the range of growth potentials for shallow-water carbonate systems estimated in relation to the time span of observation, this high rate is in agreement with values for short intervals of 105-106yrs (e.g., Schlager 1999). After drowning, the platforms at Cernera and Bivera/Clapsavon were blanketed by thin pelagic carbonates. On the former platform flanks the draping sediments in places comprise red nodular pelagic limestones (Clapsavon Limestone) similar in facies to the Han Bulog Limestones occurring elsewhere in Middle Triassic successions of the Mediterranean Tethys. The drowning of vast areas of former carbonate platforms possibly triggered the onset of bottom-water circulation in adjacent basins as suggested by the abrupt transition from laminated to bioturbated pelagic nodular limestones in the Buchenstein Formation which occurred close to the time of initial platform submergence. During the Late Ladinian the topographic features of the drowned platforms were onlapped by rapidly deposited, predominantly clastic successions including coarse breccias and volcanic rocks sealing and preserving the peculiar stratigraphic setting.  相似文献   

10.
扬子地台是一个横跨华南地块的以浅海沉积为主的大型碳酸盐岩台地,南盘江盆地是发育在扬子地台碳酸盐岩台地背景之上的一个沉积盆地,从晚元古代到晚三叠世长期海相沉积演化历史中,扬子地台一南盘江盆地体系经历了多次重要的构造演化阶段。扬子地台从晚元古代到早三叠世末期一直保持为一个稳定的碳酸盐岩台地,在中三叠世末期扬子地块整体抬升,海平面下降,形成了遍及扬子主体的拉丁期大海退,从而使扬子地块大部分地区抬升为陆。南盘江盆地位于华南地块南缘,从晚元古代到晚三叠世沉积了一套厚度巨大的海相碳酸盐岩,晚三叠世发育了一套硅质碎屑的浊流沉积,区域沉积也由此转化为河流相沉积。二叠纪和三叠纪碳酸盐岩地层记录了碳酸盐岩台地长期演化历史及其特征多样的沉积建造和沉积环境,而硅质碎屑流和构造沉降速率的变化反映了盆地在三叠纪期间经历的聚合构造和前陆盆地发展过程。在三叠纪时期扬子地台沿西南一北东方向从云南围绕南盘江盆地向贵州延伸,在南盘江盆地中发育了几个孤立的碳酸盐岩台地,包括位于贵州南部和广西境内的大贵州滩和崇左平果台地。南盘江盆地在晚二叠世发生过一次区域性的海侵事件,早三叠世时期扬子地台和几个孤立台地为由鲕粒边滩组成的低角度斜坡,中三叠世(安尼期)变为由Tubiphytes边礁组成的陡倾斜坡。盆地范围内斜坡变陡激发了Tubiphytes礁和其它的生物体发育,而且它们组成了稳定碳酸盐岩台地的边缘。位于扬子地台西部地区的关林和贞丰一带与最北部的孤立台地(大贵州滩)在安尼期发育了陡倾的边礁。在拉丁期,扬子地台在关林一带进积并与盆地碎屑沉积互层穿插沉积,而位于贞丰的台地边缘出现了由断层控制的地貌特征。与此同时,扬子地  相似文献   

11.
贵州关岭中三叠统坡段组沉积特征及其形成环境   总被引:2,自引:1,他引:1       下载免费PDF全文
范嘉松  吴亚生 《古地理学报》2002,4(1):T005-T008
贵州中三叠世碳酸盐台地边缘的“堤礁”向来受到人们的关注,并成为研究的热点。当前对台地边缘沉积的性质存在着不同的观点。某些人认为这些沉积是在浅水和拢动环境下形成的滩相沉积;而另外一些研究者则仍坚持它们代表典型的礁相沉积,因为它含有丰富的造型生物,如六射珊瑚、苔藓虫、钙质海绵和龙介类等。在贵州中部关岭县扒子场出露了一套巨厚的和属于台地边缘的中三叠统。扒子场在关岭县城的东南,直距约22km。三叠系中下统沿着公路断面连续出露。中统包括安尼阶的坡段组及拉丁阶的垄头组和竹杆坡组。坡段组主要由砂砾屑-生屑颗粒岩组成,约占全剖面的2/3。它们形成于水流激荡的滩相环境。其他岩石为骨屑-球粒粒泥岩和泥粒岩,约占全剖面的1/3。根据该组的岩石结构、沉积构造和生物组分,坡段组代表由砂砾屑、生屑组成的粒屑滩,而非生物礁相沉积。仅在底部或下部出现少量的Tubiphytes-蓝细菌造礁骨架,组成局部的礁丘。  相似文献   

12.
Native gold, in association with tetrahedrite, bournonite, bismuthian jamesonite, antimonian bismuth, chalcopyrite, sphalerite, gersdorffite, galena, covelline, yarrowite and acanthite occurs in a NW-SE trending quartz carbonate vein which cuts folded Lower Devonian slates of the Meadfoot Group. The locality, 2.5 km north of the village of Loddiswell, lies in a belt of Devonian thrust and nappe terrain with a roughly E-W trend. The host-rocks are muddy turbiditic sediments interbedded with spilitic lavas, keratophyres and tuffs, together with intrusive dolerites (greenstones) which were deformed together during the Variscan orogeny. The deposit was worked briefly in the nineteenth century but little ore was raised and it is doubtful whether any gold was recovered. Analysis of samples collected in the present study revealed gold values of 5-10 ppm and silver values of 1000-2000 ppm. The relationship between gold-antimony mineralization, the basic igneous rocks in the nappe sequence, and their intersection by a series of major NW-SE fracture zones is discussed in the context of the regional metallogenic evolution of SW England. The mineralization is considered to be the result of fluid extraction during shear movements on the NW-SE structures and shows features in common with mesothermal gold-bearing sulphide veins in other Palaeozoic provinces.  相似文献   

13.
The area of the Dolomites in the Southern Alps exhibits some of the best outcrops of carbonate platforms and platform-to-basin transitions in the world. The region has attracted geologists since the early 19th Century and has been a centre of stratigraphic and sedimentological research ever since. The interpretation of the platforms in the Dolomites as coral reefs dates back to the 1850s and was inspired by the work on modern reefs in the Pacific and Indian Oceans at that time. Very soon, however, studies in the Dolomites triggered developments of their own. Fieldwork on these Triassic atolls led to a first understanding of the dramatic facies changes at the periphery of reefs and atolls, including the recognition of slope facies and basinward transport of platform material by gravity. In addition, the platforms were used to prove long-term syndepositional subsidence on the scale of kilometres as early as 1860. After World War II, the study of modern reefs and platforms led to process-based facies models and this, in turn, guided the sedimentological analysis of the Alpine–Mediterranean belt. Repeatedly, however, the roles became reversed and the Alpine–Mediterranean platforms contributed to the fundamental underpinnings of sedimentology. In the 1980s, mountain-size outcrops in the Alps and the Apennines were recognized as models for the interpretation of shoal-water carbonates in seismic data. Seismic models of outcrops in the Dolomites, for instance, gave rise to the concept of pseudo-unconformities, i.e. rapid lateral facies changes that appear as unconformities in seismic images. In the 1990s, the Alpine–Mediterranean Mesozoic along with the North American and European Palaeozoic revealed the significance of microbially induced carbonate precipitation in constructing large limestone bodies. Studies of ancient rocks led this development because this particular carbonate factory is far less prominent now than it was at certain times in the past.  相似文献   

14.
天山-兴蒙钼矿带是中亚成矿域的重要组成部分,该成矿带主要呈近东西向分布;本文通过对天山-兴蒙钼矿带4个典型矿床Re-Os同位素精确定年,结合前人区域动力学背景的研究,揭示天山-兴蒙造山带钼矿床的成矿作用主要与岩浆侵入形成的花岗岩热液作用有关,并识别出兴蒙造山带3期岩浆活动、钼成矿作用和构造热事件;Re-Os定年结果揭示出晚古生代铜-钼矿床与俯冲-增生作用有关,三叠纪钼的成矿形成于西伯利亚板块与塔里木-华北克拉通碰撞背景下,而侏罗纪-早白垩世的钼成矿作用与古太平洋板块西向俯冲作用有关。  相似文献   

15.
Sandy turbidites, grain flows, conglomeratic mass-flows and oxide-facies iron formation are present in the late Archaean Beardmore-Geraldton terrain, a metasedimentary belt which extends for at least 80 km in an E-W direction. The marine portion of this basin contains four lithofacies associations (LA): (1) Thinbedded, iron formation-clastic sediment association. This association represents a continuum of deposit types containing iron formation; subtypes are defined on the basis of bedding attributes and the proportion of iron formation to sand/silt. (2) Thin-bedded, turbidite-dominated association. These sediments consist mostly of silt/sand beds which either show no vertical trends, or thin and fine upwards over a few metres. (3) Medium-bedded, turbidite-dominated association. Most of these sediments are medium to coarsegrained, vertically unstructured sand sequences with occasional structured intervals. (4) Thick-bedded association. This is dominated by poorly graded sands up to 7–8 m in thickness. Sand beds are characterised by a thin basal zone of coarse sand and pebbles, a large central interval containing a mixture of medium and coarse sand, and a thin upper zone of fine sand/silt. The overall depositional system was initiated by transport of sediment by braided streams to the strand area where it accumulated in distributary mouth bars. We infer a nearshore break in slope, locally with large channels (LA 4) extending from close to the strand line across deltaic surfaces to the deeper portions of submarine fans (structured portions of LA 3). However, many deltaic surfaces probably were not tapped by major channels, but merged downslope into a submarine ramp. Sediment was transported across the ramp by slump events and sheet-like grain flows (unstructured portions of LA 3). Iron formation and LA 2 sediments probably accumulated both in upper-mid ramp areas with low sediment delivery rates, and distal to fan-ramp successions. As major streams on the braid plain changed position, associated submarine channels and slump-fed ramp deposits also would have shifted laterally. This produced overlap of different facies associations in both the fan and ramp environments, which may explain why observed vertical trends in bedding are limited to several metres. We suggest that on narrow, active Archaean cratonic margins, additional non-regular processes such as variations in sediment supply related to periods of heightened pyroclastic activity, and seismic activity associated with the arc, also contributed to the lack of vertically structured sequences. Turbidite sequences in such environments in general may contain important contributions from both submarine ramp and submarine fan sedimentation.  相似文献   

16.
《International Geology Review》2012,54(14):1803-1821
ABSTRACT

In the Central Anatolia, the style of neotectonic regime governing the region has been a controversial issue. A tectonic study was carried out in order to contribute to this issue and better understand the neotectonic stress distribution and style of deformation in the west-southwest of the Konya region. From Middle Miocene to Recent time, Konya region was part of the Central Anatolia extensional province. The present-day topography in the west-southwestern part of Konya is characterized by alternating elongate grabens and horsts trending E-W and NW-SE. The grabens were developed upon low-grade metamorphic rocks of Palaeozoic and Mesozoic ages and ophiolite slabs of possibly Late Cretaceous age. The evolutionary history of grabens is episodic as evidenced by two graben infills; older and younger graben infills separated by an angular unconformity. The older infill consists of fluviolacustrine sequence intercalated with calc-alkaline lavas and pyroclastic rocks. This infill is folded; thrust faulted and Middle Miocene-Early Pliocene in age. The younger and undeformed basin fill comprises mainly of Plio-Quaternary conglomerates, sandstone-mudstone alternations of alluvial fan and recent basin floor deposits. Three major tectonic phases were differentiated based on the detailed mapping, morphological features and kinematic analysis. Approximately N-S trending extension began in the Middle Miocene-Early Pliocene in the region with the formation of E-W and NW-SE-trending grabens. Following NE-SW-directed compression which deformed the older basin fill deposits by folding and thrusting, a second period of ENE-WSW-trending extension began in the late Pliocene and continued to the present. The west-southwestern margin of the Konya depression is bounded by the Konya Fault Zone. It is an oblique-slip normal fault with a minor dextral strike-slip component and exhibits well-preserved fault slickensides and slickenlines. Recent seismicity and fault-related morphological features reveal that the Konya Fault Zone is an active neotectonic structure.  相似文献   

17.
论古代海洋碳酸盐沉积环境基本模式   总被引:5,自引:0,他引:5       下载免费PDF全文
我国碳酸盐地层分布广泛,厚度巨大,类型复杂,从而为我国碳酸盐研究提供广阔前景。解放以后,我国首先在四川盆地的二、三叠系碳酸盐岩中获得高产气田,推动了碳酸盐岩的研究。  相似文献   

18.
自中三叠世扬子与华北板块发生碰撞—深俯冲作用以来,大别造山带南界上的襄樊—广济断裂带主要经历过两次变形事件: 1)早期变形事件发生在中三叠世末—晚三叠世初的造山带折返阶段,表现为造山带南边界上的韧性剪切带。这期北西—南东走向的剪切带向南西陡倾,发育北西—南东向的矿物拉伸线理,主要为右行走滑的运动性质,属于造山带斜向折返的侧边界走滑剪切带。造山带折返过程中将前陆褶断带北缘原先东西向褶皱改造为北西—南东走向。2)晚期变形事件发生在晚侏罗世,表现为脆性逆冲断层,使得前陆褶断带向北东逆冲在造山带南缘之上,同时在前陆上形成了一系列的逆冲断层。该断裂带的晚期逆冲活动与郯庐断裂带左行平移同时发生,代表了滨太平洋构造活动的开始。  相似文献   

19.
喜马拉雅地区的碳酸盐台地产生、发展和消亡与特提斯造山带形成的动力演化息息相关。三叠纪时,碳酸盐台地较稳定地在聂拉木陆架边缘发展起来,主要受陆源碎屑强烈干扰,碳酸盐台地在其生长面附近发育。早、中侏罗世,碳酸盐台地受构造沉降和海平面变化强烈影响,从潮下低能带向高能变浅的镶边台地旋回性发展。在台地边缘斜坡—盆地中发育一套特殊的碳酸盐“喷溢流”沉积。晚侏罗世,碳酸盐台地受被动大陆边缘初期快速热沉降影响,被黑色页岩覆盖,台地被淹没死亡。早白垩世,陆架边缘台地可能以孤立台地为特征,相当多的碳酸盐台地碎裂或崩塌,靠大陆一侧则主要为末端变陡缓坡。晚白垩世开始,碳酸盐台地主要在岗巴一带发育,发育向上变深的沉积序列,为受前陆挠曲影响产物。第三纪初,碳酸盐台地主要为缓坡,属于前陆盆地远离造山带一侧的碳酸盐台地沉积。喜马拉雅碳酸盐台地的最终消亡是由于造山抬升暴露。  相似文献   

20.
河南嵩县东湾金矿田地质特征及找矿远景   总被引:1,自引:0,他引:1  
庞绪成 《地质与勘探》2011,47(5):765-771
东湾金矿田受区域性近南北向和近东西向构造联合控制,岩浆活动强烈,成矿地质条件好,已发现多处金矿床及金矿点。主要金矿体呈脉状或透镜状赋存于东湾断裂蚀变带及其两侧的近东西向断裂带内,构造带宽2~20m不等,最大宽度超过30m。矿体倾角50°~65°,空间上呈舒缓波状延伸,膨大收缩、分枝复合现象普遍。与金矿化关系密切的矿化蚀...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号