首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observed recent freshening trend in the deep North Atlantic and the Labrador Sea is investigated in three forced ensembles and a long control simulations using the HadCM3 coupled ocean–atmosphere–sea-ice climate model. The 40 yr freshening trend during the late half of the 20th century is captured in the all forcings ensemble that applies all major external (natural and anthropogenic) forcing factors. Each ensemble has four members with different initial conditions taking from the control run at a 100 yr interval. No similar freshening trend is found in each of the four corresponding periods of the control simulation. However, there are five large freshening events in a 1640 yr period of the control run, each following a sudden salinity increase. A process analysis revealed that the increase in salinity in the Labrador Sea is closely linked to deep convections while the following freshening trend is accompanied by a period of very weak convective activities.The fact that none of the five large freshening events appears in the four corresponding periods following the initial conditions of the four members of the all forcings ensemble suggest that external forcings may have contributed to triggering the events. Further analyses of two other ensemble simulations (natural forcings only and anthropogenic forcings only) have shown that natural rather than anthropogenic factors are responsible. Based on our model results, we can not attribute the simulated freshening to anthropogenic climate change.  相似文献   

2.
Experiments with a climate model were conducted under present day and last glacial maximum conditions in order to examine the model’s response to a vertical mixing scheme based on internal tide energy dissipation. The increase in internal tide energy flux caused by a 120 m reduction in sea level had the expected effect on diffusivity values, which were higher under lower sea level conditions. The impact of this vertical diffusivity change on the Atlantic meridional overturning is not straightforward and no clear relationship between diffusivity and overturning is found. There exists a weak positive correlation between overturning and changes to the power consumed by vertical mixing. Most of the climatic response generated by sea level change was not related to alterations in the internal tide energy flux but rather to the direct change in sea level itself.  相似文献   

3.
4.
5.
The treatment of diffusion due to the tidal current in the near-shore ocean, and the similitude in the hydraulic model experiment are studied.In broad and shallow tidal bays and in the coastal seawaters near irregular boundaries, horizontal eddy-currents induced geometrically and turbulence caused by their cascading have predominant effect on dispersion of river and waste waters. These turbulent diffusion processes are similarly reproduced in the Froude models of turbulent resume, by adding the similitude for the self-similar structure of the spectral density of turbulence, or the eddy diffusivity. The similitude means to take the scale ratios of the time and the vertical length as the two-thirds power of the scale ratio of the horizontal length.Similitudes are also derived for the system of the gravitational circulation, the stratification and the salt-mass transport in partially and well-mixed estuaries. Generally, the vertical eddy diffusivity must be exaggerated by a half power of the model distortion externally by some methods of agitation. When the tidal bay is broad and very shallow, the Rayleigh number and the Hansen number are small, and the effect of density current and stratification on the flushing is small. Instead the effect of local eddies, geometrically induced tidal residual circulations become predominant. In this special case, there is no need to satisfy the similitude for density difference and vertical shear effects on dispersion.  相似文献   

6.
引潮力对海洋环流模式的影响   总被引:1,自引:1,他引:1  
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.  相似文献   

7.
1Introduction Seaiceplaysanimportantroleinmoderating heatandmoistureexchangesbetweentheatmosphere andtheoceanathighlatitudes.Seaicealsointeracts withthebroaderclimatesystembythepositiveice albedofeedback(Curryetal.,1995),whichamplifies projectedclimatewarmingatthehighlatitudes,andby theoceanicfeedbackinvolvingicegrowthandmelt, whichinfluencesglobalthermohalinecirculation(i.e., theNorthAtlanticDeepWaterandtheAntarcticBot- tomWater)(Walsh,1983;Barryetal.,1993). Recently,theimplementationofas…  相似文献   

8.
A three-dimensional ocean biogeochemical model of the tropical Atlantic Ocean was run for more than half a century (1949–2000) in order to characterize the ocean biogeochemical response to variable forcing over this period. The seasonal cycle in the equatorial upwelling zone agrees reasonably well with observations and other published simulations but underestimates phytoplankton biomass under strong upwelling conditions. Away from the equator, modelled nutrient flux and biological production are maximal in each hemisphere's winter season, and appear to be proximately forced by evaporative cooling and wind stirring rather than by Ekman upwelling. The fraction of the total variance associated with the seasonal cycle is considerably smaller for modelled biogeochemical fields than for sea-surface temperature over this long simulation, and much of the biogeochemical variance is associated with interdecadal changes. The model results suggest that the tropical Atlantic became more productive following the Pacific climate shift of 1976 and remained so until about 1989. Summer surface nitrate concentrations during the 1990s were lower than those in the 1980s. The relationship between the equatorial and off-equatorial regimes may have changed following the 1976 event, with equatorial variability dominating the basin-wide variance patterns after 1976.  相似文献   

9.
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.  相似文献   

10.
The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model (WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCE- ROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmo- spheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice ex- tents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beau- fort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is determined to a l  相似文献   

11.
The previous studies by the MASNUM research team have shown the effectiveness of the wave-induced mixing (Bv) in improving the simulation of upper-ocean thermal structure. The mechanisms of Bv are further investigated by incorporating different Bv products into the MASNUM wave-circulation coupled model. First, experiments were designed to explore the effects of Bv, which contain the contributions at different wave lengths (l). The results of three experiments, the non-Bv case, the short-wave case (l <300 m), and the long-wave case (l >300 m) are compared, and it is found that the long waves are the most important component for Bv to generate mixing in the upper ocean. As the swell plays dominant role in mixing, the parameterization of Bv into wind may be not a proper way. Second, Bv effects at different time-scales, including daily and monthly, were examined. The results show that the monthly averaged Bv has larger impact than the daily averaged Bv, especially in summer.  相似文献   

12.
本文构造了一个考虑潮汐、中尺度涡和地形影响下的南海底部环流诊断模型。在该模型中,潮汐混合和涡致混合引起的垂直速率用一个类似的改进参数化方案来表示。该模型结果显示在南海深层吕宋海峡"深水瀑布"和斜压影响最大,潮汐作用和中尺度涡影响次之,风场的影响最小。斜压影响的整体效应与其他因素相反。潮汐混合与涡致混合具有明显的地形依赖性。潮汐混合主要集中在南海北部海盆地形较为陡峭的陆坡区和南海中部海山区,而涡致混合主要集中在海盆西边界区以及中部海山区。在不考虑吕宋海峡"深水瀑布"、潮汐和中尺度涡的情况下(对应吕宋海峡关闭),南海底部环流为反气旋式环流。考虑吕宋海峡"深水瀑布"后,南海底层环流为气旋式环流,而潮汐混合和涡致混合起到加强整个气旋式环流强度的作用。此外,该模型还给出了南海底部环流量级大小与地形坡度之间的密切关系,即地形坡度较大的地方,其流速也大。这对于现场观测有着一定的参考意义。最后,本文用尺度分析的方法从理论上分析了该模型的适用性,证实了该模型具有一定的可靠性。  相似文献   

13.
14.
Warm and cold events in the Gulf of Guinea, characteristic of the tropical interannual variability, can be generated in several ways. This emerges from a statistical analysis of 200 years of interannual variability simulated by a coupled ocean–atmosphere General Circulation Model. The application of a clustering technique to the anomalies of the thermal energy stored in the upper oceanic layers leads to the separation of the events, either warm or cold, into a number of classes, each of them distinguished by a particular generation scheme. The physical mechanisms involved are identified by examining the contributions of the various terms in the mixed layer tendency equation.
Basically, those few classes can be sorted into two larger groups. In one of them, the onset stage is characterized by an eastward propagation of the anomalies. Atmospheric flows play a leading part in the generation of events within this group. In the second group, thermal energy anomalies are generated in situ in the Gulf of Guinea, and it is mixing that gives the most important contribution to the development of the events.
The different classes are related to different seasonal signatures and also to differences in the influence of the El Niño-Southern Oscillation (ENSO). While some of the classes are strongly influenced by ENSO, while in others this influence is not significant. This can explain the barely significant correlations between ENSO and the Atlantic warm events, a feature that the simulation analyzed here shares with the observations.  相似文献   

15.
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.  相似文献   

16.
17.
Observational evidence indicates that in the northern North Atlantic, especially in the Labrador Sea, almost the whole column of the ocean water is fresher, and colder in late 20th century than in 1950–1960s. Here we analyze a four-member ensemble of the 20th century simulations from a coupled climate model to examine the possible causes for these observed changes. The model simulations resemble the observed changes in the northern North Atlantic. The simulated results show that a decreased meridional freshwater divergence and an increased meridional heat divergence associated with a weaker thermohaline circulation in the North Atlantic are the primary causes for the freshening and cooling in the northern North Atlantic. The increased precipitation less evaporation tends to enforce the freshening, but the reduced sea ice flux into this region tends to weaken it. On the other hand, the surface warming induced by a higher atmospheric CO2 concentration tends to heat up the northern North Atlantic, but is overcome by the cooling from increased meridional heat divergence.  相似文献   

18.
《Ocean Modelling》2010,35(3-4):111-124
Icebergs are an important part of the fresh-water cycle and, until now, have not been explicitly represented in Intergovernmental Panel on Climate Change (IPCC) class coupled global circulation models (CGCMs) of the climate system. In this study we examine the impact of introducing interactive icebergs in a next-generation CGCM designed for 21st Century climate predictions. The frozen fresh-water discharge from land is used as calving to create icebergs in the coupled system which are then free to evolve and interact with the sea-ice and ocean components. Icebergs are fully prognostic, represented as point particles and evolve according to momentum and mass balance equations. About 100,000 individual particles are present at any time in the simulations but represent many more icebergs through a clustering approach. The various finite sizes of icebergs, which are prescribed by a statistical distribution at the calving points, lead to a finite life-time of icebergs ranging from weeks, for the smallest icebergs (60 m length), up to years for the largest (2.2 km length). The resulting melt water distribution seen by the ocean enhances deep-water formation, in particular on the continental shelves, relative to the model without icebergs.  相似文献   

19.
《Ocean Modelling》2011,38(3-4):65-84
In this article, the authors first present oceanic observations collected in a coastal area in May 2007. The evolution of temperature profiles exhibits a very clear atmospheric heating signal and is used to study mixing. Modelled atmospheric fluxes are evaluated using the oceanic measurements. The K-profile parameterisation (KPP) is chosen to identify the most important mixing processes and its parameters are tuned to minimise differences with respect to the observations.It is found that:• the tuned KPP is able to accurately represent the effect of mixing in this case;• surface and bottom boundary layers, as well as interior shear instability mixing processes all play an important role in the observed evolution of the temperature profile, the bottom boundary being the source of the most intense mixing;• the nonlocal effects in KPP (activated during nocturnal cooling periods) have to be switched off for a better agreement.  相似文献   

20.
In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide(1.10×10~(24) J) than in Exp_Control(0.91×10~(24) J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号