首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otter trawl surveys are frequently used to assess estuarine fish and macroinvertebrate communities. Although these surveys may have similar objectives and sampling areas and seasons may overlap, the sampling gear is usually unique to the agency conducting the survey. An example of this is the North Carolina Division of Marine Fisheries (NCDMF) and Environmental Monitoring and Assessment Program-Estuaries (EMAP) surveys in North Carolinian estuaries. We estimated experimentally the selectivity and efficiency of the trawls used for these surveys to determine the comparability of data used to estimate community structure and the abundance of dominant species. The catch percent similarity of the trawls was low (12.0%). The NCDMF net (3.2-m flat otter trawl, 6.4-mm mesh body, 3.2-mm cod-end, plus tickle chain) precisely (11.7%) and accurately (4.5%) sampled brown shrimp, Penaeus aztecus, density but overestimated spot, Leiostomus xanthurus, densities (22.8% accuracy), possibly because these fishes had highly contagious distributions. The EMAP net (4.9-m high-rise otter trawl, 38.1-mm mesh body and cod-end) was precise (17.9–37.4%) but inaccurate (76.8–97.2%), probably because of the single large mesh size and the lack of a tickler chain. Our study suggests the EMAP and NCDMF surveys collect different subsamples of the same fish and macroinvertebrate estuarine populations, and therefore could deliver different results and conclusions.  相似文献   

2.
To use bioassessments to help diagnose or identify the specific environmental stressors affecting estuaries, we need a better understanding of the relationships among sediment chemistry guidelines, ambient toxicity tests, and community metrics. However, this relationship is not simple because metrics generally assess the responses at the community level of biological organization whereas sediment guidelines and ambient toxicity tests generally assess or are based on the responses at the organism level. The relationship may be further complicated by the influence of other chemical and physical variables that affect the bioavailability and toxicity of chemical contaminants in the environment. Between 1990 and 1993, the U.S. Environmental Protection Agency (USEPA) conducted an Environmental Monitoring and Assessment Program (EMAP) survey of estuarine sites in the Virginian Province of the eastern United States. The surveys collected data on benthic assemblages, physical and chemical habitat characteristics, and sediment chemistry and toxicity. We characterized these estuarine sites as affected by sediment contamination based on the exceedence of sediment guidelines or on ambient sediment toxicity tests (i.e., 10-day Ampelisca abdita survival). Then, benthic invertebrate metrics were compared among affected and unaffected sites to identify metrics sensitive to the contamination. A number of benthic invertebrate metrics differed between groups of sites segregated using the organism-level measures whereas other metrics did not. The difference among metrics appears to depend on the sensitivity of the individual metrics to the stressor gradient represented by metals or persistent organic toxics in sediments because the insensitive metrics do not effectively quantify the changes in the benthic invertebrate assemblage associated with these stressors. The significant relationships suggest that a relationship exists between the organism-level effects assessed by chemistry or ambient toxicity tests and the community-level effects assessed by community metrics and that the organism-level effects are predictive, to some extent, of community-level effects.  相似文献   

3.
A benthic index of biotic integrity was developed for use in estuaries of the mid-Atlantic region of the United States (Delaware Bay estuary through Albemarle-Pamlico Sound). The index was developed for the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency using procedures similar to those applied previously in Chesapeake Bay and southeastern estuaries, and was based on sampling in July through early October. Data from seven federal and state sampling programs were used to categorize sites as degraded or non-degraded based on dissolved oxygen, sediment contaminant, and sediment toxicity criteria. Various metrics of benthic community structure and function that distinguished between degraded and reference (non-degraded) sites were selected for each of five major habitat types defined by classification analysis of assemblages. Each metric was scored according to thresholds established on the distribution of values at reference sites, so that sites with low scoring metrics would be expected to show signs of degradation. For each habitat, metrics that correctly classified at least 50% of the degraded sites in the calibration data set were selected whenever possible to derive the index. The final index integrated the average score of the combination of metrics that performed best according to several criteria. Selected metrics included measures of productivity (abundance), diversity (number of taxa, Shannon-Wiener diversity, percent dominance), species composition and life history (percent abundance of pollution-indicative taxa, percent abundance of pollution-sensitive taxa, percent abundance of Bivalvia, Tanypodinae-Chironomidae abundance ratio), and trophic composition (percent abundance of deep-deposit feeders). The index correctly classified 82% of all sites in an independent data set. Classification efficiencies of sites were higher in the mesohaline and polyhaline habitats (81–92%) than in the oligohaline (71%) and the tidal freshwater (61%). Although application of the index to low salinity habitats should be done with caution, the MAIA index appeared to be quite reliable with a high likelihood of correctly identifying both degraded and non-degraded conditions. The index is expected to be of great utility in regional assessments as a tool for evaluating the integrity of benthic assemblages and tracking their condition over time.  相似文献   

4.
A benthic index of environmental condition of Gulf of Mexico estuaries   总被引:1,自引:0,他引:1  
An index was developed for estuarine macrobenthos in the Gulf of Mexico that discriminated between areas with degraded environmental conditions and areas with undegraded or reference conditions. Test sites were identified as degraded or reference based on criteria for dissolved oxygen levels, sediment toxicity tests, and sediment contamination. Discriminant analysis was used to identify a suite of measures of benthic community composition and diversity that would most successfully distinguish degraded from undegraded sites. The resultant benthic index was composed of a linear combination of three factors: the Shannon-Wiener diversity index, the proportion of total benthic abundance as tubificid oligochaetes, and the proportion of total benthic abundance as bivalve molluscs. This index was used to evaluate the spatial patterns of degraded benthic resources in the Gulf of Mexico.  相似文献   

5.
An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay   总被引:2,自引:0,他引:2  
A multimetric benthic index of biotic integrity (B-IBI) was developed using data from five Chesapeake Bay sampling programs conducted between 1972 and 1991. Attributes of the index were selected by comparing the response of 17 candidate measures of benthic condition (metrics) between a set of minimally affected reference sites and at all other sites for which data were available. This procedure was conducted independently for each of seven habitats defined by salinity and substrate. Fifteen of the 17 candidate metrics differed significantly between reference sites and other sites for at least one habitat. No metric differed significantly in all seven habitats; however, four metrics, species diversity, abundance, biomass, and percent of abundance as pollution-indicative taxa, differed in six habitats. The index was calculated by scoring each selected metric as 5, 3, or 1 depending on whether its value at a site approximated, deviated slightly from, or deviated greatly from conditions at the best reference sites. Validation based on independent data collected between 1992 and 1994 indicated that the index correctly distinguished stressed sites from reference sites 93% of the time, with the highest validation rates occurring in high salinity habitats.  相似文献   

6.
Macrobenthic community indices were examined for their ability to characterize the influence of shoreline alteration and watershed land use in nearshore estuarine environments of the Chesapeake Bay, U.S.A. Twenty-three watersheds were surveyed in 2002 and 2003 for nearshore macrobenthic assemblages, environmental parameters (i.e., dissolved oxygen, pH, total suspended solids, salinity, and sediment composition), shoreline condition, and land use. Two indices of macrobenthic biological integrity, benthic index of biological integrity in the nearshore (B-IBIN) and abundance biomass comparison (W-value), were evaluated for associations with environmental and shoreline condition, and riparian and watershed land use. Comparisons between nearshore measures of the B-IBI with offshore values (>2 m; Chesapeake Bay benthic index of biological integrity [B-IBICB]) were conducted to assess the ability of the index to reflect land use patterns at near and far proximities to shore. Nearshore macrobenthic communities were represented by a total of 94 species (mean number of species =9.2 ± 0.4 sample−1), and were dominated by the phyla Arthropoda, Annelida, and Mollusca. Temporal variability in environmental conditions and macrobenthic abundance and biomass may be attributable to the notable increase in precipitation in 2003 that led to nutrient influxes and algal blooms. For the biotic indices applied in the nearshore, the highest scores were associated with forested watersheds (W-value, B-IBIN). Ecological thresholds were identified with nonparametric change-point analysis, which indicated a significant reduction in B-IBIN and W-value scores when the amount of developed shoreline exceeded 10% and developed watershed exceeded 12%, respectively.  相似文献   

7.
Watershed landscape indicators of estuarine benthic condition   总被引:1,自引:0,他引:1  
Do land use and cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. Mid-Atlantic coastal plain (Delaware Bay to Chesapeake Bay). We considered 34 landscape metrics as potential explanatory variables and seven estuarine parameters as response variables. We developed three logistic regression models: one to calculate the probability of degraded benthic environmental quality (BEQ), as defined by chemical parameters, and two for the probability of degraded estuarine bottom communities, one using a benthic index (BI) and a second using the total number of bottom-dwelling species (TNBS, consisting of benthic macroinvertebrates and fishes). We evaluated the discriminatory power of the models with ROC (receiver operating characteristic) curves of sensitivity and specificity. All three models showed excellent discrimination of high and low values. A model using the sum of all human land uses and percent wetlands correctly classified BEQ in 86% of the cases; low benthic index and low total number of bottom species were each associated with degraded BEQ (p<0.01). The BI model used percent riparian urban, riparian wetlands, and agriculture on steep slopes (76% correct classification) and correctly predicted high-low benthic index of an independent data set 79% of the time (p<0.05). The TNBS model used percent wetlands, riparian wetlands, and riparian agriculture (74% correct classification). Watersheds with higher percentages of urban and agricultural land uses were associated with lower benthic environmental quality, benthic index, and biodiversity, whereas those with higher percentages of wetlands were associated with higher numbers. As human development of watersheds increases, statistical prediction rules developed from landscape metrics could be a cost-effective method to identify potentially threatened estuaries.  相似文献   

8.
The Valdivia River (Lake Region, Chile) originates in Riñihue Lake and flows into the sea at Corral Bay (39°52′S latitude), changing names several times along its course. The aquatic benthic flora (algae and aquatic plants) of the Valdivia River was characterized, based on 22 sites sampled and 124 plant species collected. Four benthic vegetation zones were established using presence-absence data: a freshwater zone and a marine zone were found at the extremes of the transect; an estuarine zone and a discontinuity zone were detected in the middle of this transect. The freshwater zone was characterized by a relatively diverse assemblage of vascular plants, the marine zone was dominated by algae and was rich in species. By contrast the estuarine zone was inhabited by only a few species but in great abundance, while the discontinuity zone was poor, in species and low in cover vegetation.  相似文献   

9.
Development and validation of an estuarine biotic integrity index   总被引:1,自引:0,他引:1  
We tested hypotheses about how estuarine fish assemblages respond to habitat degradation and then integrated these responses into an overall index, the Estuarine Biotic Integrity Index (EBI), which summarized observed changes. Fish assemblages (based on trawl catches) and habitat quality were measured monthly or biweekly at nine sites in two estuaries from March 1988 to June 1990. Submerged aquatic vegetation habitats were classified as low or medium quality based on year-round measurements of chemical and physical characteristics (phytoplankton blooms; macroalgae; dissolved oxygen; nutrients; dredged channels). We tested 15 metrics and selected 8 for inclusion in the EBI: total number of species, dominance, fish abundance (number or biomass), number of nursery species, number of estuarine spawning species, number of resident species, proportion of benthic-associated fishes, and proportion abnormal or diseased. Fish assemblages in low-quality sites had lower number of species, density, biomass, and dominance compared with medium-quality sites. Fish abundance peaked in July and August, and was lowest in January to March. The seasonal cycle in low-quality sites was damped compared with medium-quality sites. Abundances of fishes using estuaries as a spawning and nursery area and of benthic species were lower in low-quality sites compared to medium-quality sites. The individual metrics and the overall index correlated with habitat degradation. The EBI based on biomass did not do better than the EBI based on number, indicating that the extra effort to obtain biomass may not be warranted. We suggest the EBI is a useful indicator of estuarine ecosystem status because it reflects the relationship between anthropogenic alterations in estuarine ecosystems and the status of higher trophic levels.  相似文献   

10.
An objective of the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency is to develop an index for assessing benthic community condition in estuaries of the mid-Atlantic region of the United States (Delaware Bay through Pamlico Sound). To develop such an index, natural unimpaired communities must first be identified and variability related to natural factors accounted for. This study focused on these two objectives; Lnansó et al. (2002) describe the index. Using existing data sets from multiple years, classification analyses of species abundance and discriminant analysis were employed to identify major habitat types in the MAIA region and evaluate the physical characteristics that structure benthic infaunal assemblages. Sampling was restricted to soft bottoms and to the index development period, July through early October. The analyses revealed salinity and sediment composition as major factors structuring infaunal assemblages in mid-Atlantic estuaries. Geographical location was a secondary factor. Nine habitat classes were distinguished as a combination of 6 salinity classes, 2 sediment types, and the separation of North Carolina and Delaware-Chesapeake Bay polyhaline sites. The effect of sediment types on faunal assemblages was restricted to polyhaline sites, which were separated into two sediment groups above and below 90% sand content. Assemblages corresponding to each of these 9 habitats were identified in the context of widely recognized patterns of dominant taxa. Differences between North Carolina and Delaware-Chesapeake Bay polyhaline assemblages were attributed to the relative contributions of species and not to differences in species composition. No zoogeographic discontinuities could be identified. Our results reinforce the findings of recent studies which suggest that, with respect to estuarine benthic assemblages, the boundary between the Virginian and the Carolinian Provinces be moved to a new location south of Pamlico Sound.  相似文献   

11.
Ecological restoration of salt marshes using plantations may enhance the macroinvertebrate community, but little is known about the development of benthic macroinvertebrates after ecological engineering projects in European salt marshes. This study analyzed the environment and the macroinvertebrate community in European salt marshes 3 years after restoration using Spartina maritima plantations in comparison with non-restored and preserved marshes in Odiel Marshes (Southwest Iberian Peninsula). We hypothesized that planting Spartina maritima on intertidal mudflats would increase species richness and diversity (Shannon–Weaver index) of the benthic macroinvertebrate community by increasing environmental heterogeneity, providing feeding resources and improving sediments characteristics. Benthic macrofauna samples (composed mainly of annelids, crustaceans, and mollusks) were sampled in plots of 20 cm?×?25 cm to 5 cm depth between +1.8 and +3.0 m above Spanish Hydrographic Zero. Sediment organic matter content, bulk density, pH, and redox potential were the variables that best explained macroinvertebrate distribution. Restored marshes achieved similar diversity and even higher specific richness than preserved marshes, although with differences in species composition. Non-restored marshes showed the lowest diversity. Restored and preserved marshes did not differ in total abundance or biomass of macroinvertebrates, both being higher than in non-restored marshes. The macroinvertebrate communities in preserved and non-restored marshes showed the largest difference in taxa composition, with restored marshes occupying an intermediate position. Salt marsh restoration using S. maritima increased the complexity (ecological diversity and species richness) and abundance of the benthic macroinvertebrate community. Our study offers new information about the role of salt marsh plants in mediating faunal communities via ecological engineering projects.  相似文献   

12.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

13.
A multimetric fish index, the Estuarine Fish Community Index (EFCI) of Harrison and Whitfield (2004), was applied to data collected for 190 South African estuaries. Estuaries spanned three biogeographic regions and included three distinct estuarine typologies. The EFCI is based on 14 metrics or measures that represent four broad fish community attributes: species diversity and composition, species abundance, nursery function, and trophic integrity. Metric reference conditions and scoring criteria were developed separately for each estuary type within each zoogeographic region. The final EFCI was applied to each estuary by comparing its fish community with the appropriate reference. Index values ranged between 18 (very poor) and 66 (very good). A comparison of the EFCI with independent measures of estuarine condition revealed that the index was able to effectively differentiate between poor and good quality sites. Applying the EFCI to estuaries in which multiple samples were taken also showed that the index is reproducible. The EFCI is both a robust and sensitive method for assessing the ecological condition of estuarine systems; it is also an effective communication tool for converting ecological information into an easily understood format for managers, policy makers, and the general public.  相似文献   

14.
A eutrophication gradient was assembled from four spring-fed estuaries and four surface-fed estuaries to determine whether changes in zooplankton and hyperbenthos abundance along the gradient were gradual or abrupt. For 1 year in each estuary, monthly faunal surveys were conducted during nighttime flood tides using oblique plankton-net tows, producing abundance data for 316 taxa. Indicator taxa for the spring-fed and surface-fed groups were identified from a combination of abundance and encounter frequencies. Seventeen of the 20 strong indicator taxa for the spring-fed group (85 %) were benthic, whereas 10 of the 13 strong indicators for the surface-fed group (77 %) were plankton-oriented. The eight communities were ordinated by canonical analysis of principal coordinates (CAP); the estuarine faunas were found to be uniquely distributed along the principal CAP axis. Success of blind reclassification of plankton samples to their respective estuaries of origin ranged from 75 to 100 % (mean, 91 %). Given the assembled gradient was composed of distinctive communities that were distributed across a broad range of trophic states, the transition between benthic and plankton-oriented indicators was investigated and found to be abrupt, with strong shifts occurring nearer the oligotrophic end of the gradient. The CAP ordination agreed with trends in light attenuation, but not dissolved oxygen. We conclude that the abrupt faunal shifts were likely related to differences in basal resource (primary producer) availability brought about by differences in light environment. Abrupt loss of benthic basal resources will affect benthic consumers and those plankton-oriented consumers that intermittently depend on benthic biomass pathways whenever plankton-based pathways are unproductive.  相似文献   

15.
Associations between macrobenthic communities, measures of water column and sediment exposure, and measures of anthropogenic activities throughout the watershed were examined for the Chesapeake Bay, U.S. The condition of the macrobenthic communities was indicated by a multimetric benthic index of biotic integrity (B-IBI) that compares deviation of community metrics from values at reference sites assumed to be minimally altered by anthropogenic sources of stress. Correlation analysis was used to examine associations between sites with poor benthic condition and measures of pollution exposure in the water column and sediment. Low dissolved oxygen events were spatially extensive and strongly correlated with benthic community condition, explaining 42% of the variation in the B-IBI. Sediment contamination was spatially limited to a few specific locations including Baltimore Harbor and the Southern Branch of the Elizabeth River and explained about 10% of the variation in the B-IBI. After removing the effects of low dissolved oxygen events, the residual variation in benthic community condition was weakly correlated with surrogates for eutrophication—water column concentrations of total nitrogen, total phosphorus, and chlorophylla. Associations between benthic conditions and anthropogenic inputs and activities in the watershed were also studied by correlation analysis. Benthic condition was negatively correlated with measures of urbanization (i.e., population density, point source loadings, and total nitrogen loadings) and positively correlated with watershed forestation. Significant correlations were observed with population density and nitrogen loading below the fall line, but not above it, suggesting that near-field activities have a greater effect on benthic condition than activities in the upper watershed. At the tributary level, the frequency of low dissolved oxygen events and levels of sediment contaminants were positively correlated with population density and percent of urban land use. Sediment contaminants were also positively correlated with point source nutrient loadings. Water column total nitrogen concentrations were positively correlated with nonpoint nutrient loadings and agricultural land use while total phosphorus concentrations were not correlated with land use or nutrient loadings. Chlorophylla concentrations were positively correlated with nitrogen and phosphorus concentrations in the water column and with agricultural land use but were not correlated with nutrient loads.  相似文献   

16.
Being sensitive to environmental changes, foraminifera have been extensively used to monitor pollution level in the marine environment, including the effect of mining in coastal areas. In the Goa state of India, the rejects from opencast mining on land largely find their way to the estuaries, as washout during monsoon. Additionally, the Mormugao Port at the mouth of the Zuari estuary is the hub of activities due to the transport of ore from hinterland areas by barges and its subsequent loading for export. On the directive of the Supreme Court of India, all the mining-related activities abruptly stopped throughout India, including that in Goa in 2012, and got reinstated in 2015. Therefore, it provided a fit case to test the effectiveness of benthic foraminifera as an indicator of environmental impact due to mining activities. A total of ten surface sediment samples from five locations in Zuari estuary were collected from a depth range of 4.5–8.5 m in the years of 2013 and 2016 and were analyzed for both the living (stained) and dead benthic foraminifera. The year 2013 represents a time interval immediately after the closure of extensive mining activity, and the sampling during 2016 represents minimal mining. The living benthic foraminiferal abundance was higher (19–54/g sediment) during 2013 and decreased substantially during 2016 (3–22/g sediment), suggesting an adverse effect of activities associated with mine closure on benthic foraminifera. Additionally, the relative abundance of Ammonia was also significantly low during the year 2016. The temporal variation in dead foraminifera was, however, different than that of the living foraminifera. The differential response was attributed to the terrigenous dilution as a result of change in sedimentation rate. Therefore, we conclude that living foraminifera correctly incorporate the changes in mining pattern and may be used as an effective tool to monitor the impact of mining. We further suggest that the potential counter effect of terrigenous dilution on total and living benthic foraminiferal population should be considered while interpreting temporal variations in foraminiferal abundance in marginal marine settings.  相似文献   

17.
This study was designed to investigate seasonal changes on food available for benthic consumers in relation to tidal levels and sediment depth in an estuarine beach. The relationships between the biochemical characteristics of sedimentary organic matter and benthic macrofauna were analyzed quarterly over 2 years (from January 1997 to January 1999), in an estuarine soft intertidal zone from the NW coast of Spain (42°64′04″N, 8°88′36″W). Sediment samples were collected to provide a two-dimensional view of macroinfauna distribution in the intertidal zone and its relationship with the quantity and quality of the organic matter. The nutritional value of organic matter (i.e., lipid, protein, and carbohydrate) and the content of chlorophyll a of the sediment were measured. Macrofaunal assemblages and food availability in the sediment were studied at three tidal levels on the shore: two intertidal and one supratidal. Macroinfauna and biochemical compounds showed a clear vertical stratification with the highest macrofaunal abundance at the superficial layer of the sediment, where redox potential discontinuity was also observed. Crustaceans were found mainly inhabiting the supratidal level of the estuarine beach, while polychaetes and mollusks occupied the intertidal level. Food availability, measured as biopolymeric carbon, and also chlorophyll a from the sediment were better related to macroinfauna abundance, biomass, and abundance of main taxonomic groups. Macrofauna assemblages showed particular distribution in both vertical and horizontal ranges suggesting specific preferences to several abiotic factors. No clear seasonal pattern was found in macrofauna and sedimentary organic characteristics suggesting that macrofaunal assemblages are controlled by complex and unpredictable factors, including small-scale changes in substrate and hydrological characteristics.  相似文献   

18.
A year-long trawl survey of the mangrove-fringed Laguna Joyuda, Puerto Rico yielded 41 species of juvenile and adult fishes. Twelve percent of the species and 55% of the individuals were residents in the lagoon; 56% of the species and 44% of the individuals were cyclic visitors, mostly juveniles of species which spawn offshore. The lagoon yielded fewer species than tropical estuaries in continental regions of the Caribbean and temperate estuaries of North America. However, paralleling other estuarine habitats, Laguna Joyuda supported three primary types of fishes, a resident small flatfish (Achirus lineatus), a complex of transient juveniles (Gerreidae, paralleling the Sciaenidae of higher latitudes), and small planktivores (Anchoa spp.). Seasonal patterns in the abundance of individual species were not strong, but overall abundance showed a wet season maximum, particularly because of recruitment of anchovies and cyclic visitors in April, May, and June. Wet season abundance corresponded with highest water column productivity and detrital input to the benthos. Fishes associated with the water column appeared to show greater variation in abundance than those associated with more stable benthic food webs.  相似文献   

19.
We evaluated a hierarchical framework for seagrass monitoring in two estuaries in the northeastern USA: Little Pleasant Bay, Massachusetts, and Great South Bay/Moriches Bay, New York. This approach includes three tiers of monitoring that are integrated across spatial scales and sampling intensities. We identified monitoring attributes for determining attainment of conservation objectives to protect seagrass ecosystems from estuarine nutrient enrichment. Existing mapping programs provided large-scale information on seagrass distribution and bed sizes (tier 1 monitoring). We supplemented this with bay-wide, quadrat-based assessments of seagrass percent cover and canopy height at permanent sampling stations following a spatially distributed random design (tier 2 monitoring). Resampling simulations showed that four observations per station were sufficient to minimize bias in estimating mean percent cover on a bay-wide scale, and sample sizes of 55 stations in a 624-ha system and 198 stations in a 9,220-ha system were sufficient to detect absolute temporal increases in seagrass abundance from 25% to 49% cover and from 4% to 12% cover, respectively. We made high-resolution measurements of seagrass condition (percent cover, canopy height, total and reproductive shoot density, biomass, and seagrass depth limit) at a representative index site in each system (tier 3 monitoring). Tier 3 data helped explain system-wide changes. Our results suggest tiered monitoring as an efficient and feasible way to detect and predict changes in seagrass systems relative to multi-scale conservation objectives.  相似文献   

20.
Abundance of estuarine biota can vary with freshwater inflow through several mechanisms. One proposed mechanism is that the extent of physical habitat for an estuarine species increases with flow. We estimated the contribution of variation in habitat volume to the responses of eight species of estuarine nekton to changes in freshwater flow in the San Francisco Estuary. Resource selection functions for salinity and depth were developed for each species (and for five additional species) using five monitoring data sets. The TRIM3D hydrodynamic model was run for five steady flow scenarios to determine volume by salinity and depth, and resource selection functions were used as a weighting factor to calculate an index of total habitat for each species at each flow. The slopes of these habitat indices vs. flow were consistent with slopes of abundance vs. flow for only two of the species examined. Therefore, other mechanisms must underlie responses of abundance to flow for most species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号