首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We suggest a new method to determine the piecewise‐continuous vertical distribution of instantaneous velocities within sediment layers, using different order time‐domain effective velocities on their top and bottom points. We demonstrate our method using a synthetic model that consists of different compacted sediment layers characterized by monotonously increasing velocity, combined with hard rock layers, such as salt or basalt, characterized by constant fast velocities, and low velocity layers, such as gas pockets. We first show that, by using only the root‐mean‐square velocities and the corresponding vertical travel times (computed from the original instantaneous velocity in depth) as input for a Dix‐type inversion, many different vertical distributions of the instantaneous velocities can be obtained (inverted). Some geological constraints, such as limiting the values of the inverted vertical velocity gradients, should be applied in order to obtain more geologically plausible velocity profiles. In order to limit the non‐uniqueness of the inverted velocities, additional information should be added. We have derived three different inversion solutions that yield the correct instantaneous velocity, avoiding any a priori geological constraints. The additional data at the interface points contain either the average velocities (or depths) or the fourth‐order average velocities, or both. Practically, average velocities can be obtained from nearby wells, whereas the fourth‐order average velocity can be estimated from the quartic moveout term during velocity analysis. Along with the three different types of input, we consider two types of vertical velocity models within each interval: distribution with a constant velocity gradient and an exponential asymptotically bounded velocity model, which is in particular important for modelling thick layers. It has been shown that, in the case of thin intervals, both models lead to similar results. The method allows us to establish the instantaneous velocities at the top and bottom interfaces, where the velocity profile inside the intervals is given by either the linear or the exponential asymptotically bounded velocity models. Since the velocity parameters of each interval are independently inverted, discontinuities of the instantaneous velocity at the interfaces occur naturally. The improved accuracy of the inverted instantaneous velocities is particularly important for accurate time‐to‐depth conversion.  相似文献   

2.
Common-depth-point stacking velocities may differ from root-mean-square velocities because of large offset and because of dipping reflectors. This paper shows that the two effects may be treated separately, and proceeds to examine the effect of dip. If stacking velocities are assumed equal to rms velocities for the purpose of time to depth conversion, then errors are introduced comparable to the difference between migrated and unmigrated depths. Consequently, if the effect of dip on stacking velocity is ignored, there is no point in migrating the resulting depth data. For a multi-layered model having parallel dip, a formula is developed to compute interval velocities and depths from the stacking velocities, time picks, and time slope of the seismic section. It is shown that cross-dip need not be considered, if all the reflectors have the same dip azimuth. The problem becomes intractable if the dips are not parallel. But the inverse problem is soluble: to obtain, stacking velocities; time picks, and time slopes from a given depth and interval velocity model. Finally, the inverse solution is combined with an approximate forward solution. This provides an iterative method to obtain depths and interval velocities from stacking velocities, time picks and time slopes. It is assumed that the dip azimuth is the same for all reflectors, but not necessarily in the plane of the section, and that the curvature of the reflecting horizons is negligible. The effect of onset delay is examined. It is shown that onset corrections may be unnecessary when converting from time to depth.  相似文献   

3.
—In deep reflection seismics the estimation of seismic velocities is hampered in most cases due to the low signal level with respect to noise. In the τ-p domain, it is possible to perform the velocity analysis even under such unfavorable signal conditions. This is achieved by making use of special properties of the transform, which enhance the signal-to-noise ratio. Further noise suppression is realized by incorporating filter procedures into the transform algorithm. The velocity analysis itself is also done in the τ-p domain by calculating and evaluating constant velocity gathers. The results can be directly used in the time domain. A mute algorithm, implemented into the τ-p velocity analysis procedure, further reduces noise. This velocity estimation method is discussed with synthetic data and applied to DEKORP data.  相似文献   

4.
From seismic surveys zero offset reflection times and root-mean-square velocities are obtained. By use of Dix-Krey's formula, the interval velocities can be calculated. If no well velocity survey exists, the interval velocities and T(o) times are the only available information. The suggested way to get a regionally valid velocity distribution is to select N“leading horizons”, where a major change in the velocity parameters occurs and to compute the parameters of the selected velocity depth function (in most cases linear increase with depth) by a special approximation for the interval between two adjacent “leading horizons”. Herewith all reflection horizons within the interval are taken into account.  相似文献   

5.
The problem of conversion from time‐migration velocity to an interval velocity in depth in the presence of lateral velocity variations can be reduced to solving a system of partial differential equations. In this paper, we formulate the problem as a non‐linear least‐squares optimization for seismic interval velocity and seek its solution iteratively. The input for the inversion is the Dix velocity, which also serves as an initial guess. The inversion gradually updates the interval velocity in order to account for lateral velocity variations that are neglected in the Dix inversion. The algorithm has a moderate cost thanks to regularization that speeds up convergence while ensuring a smooth output. The proposed method should be numerically robust compared to the previous approaches, which amount to extrapolation in depth monotonically. For a successful time‐to‐depth conversion, image‐ray caustics should be either nonexistent or excluded from the computational domain. The resulting velocity can be used in subsequent depth‐imaging model building. Both synthetic and field data examples demonstrate the applicability of the proposed approach.  相似文献   

6.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

7.
For years, reflection coefficients have been the main aim of traditional deconvolution methods for their significant informational content. A method to estimate seismic reflection coefficients has been derived by searching for their amplitude and their time positions without any other limitating assumption. The input data have to satisfy certain quality constraints like amplitude and almost zero phase noise—ghosts, reverberations, long period multiples, and diffracted waves should be rejected by traditional processing. The proposed algorithm minimizes a functional of the difference between the spectra of trace and reflectivity in the frequency domain. The estimation of reflection coefficients together with the consistent “wavelet’ is reached iteratively with a multidimensional Newton-Raphson technique. The residual error trace shows the behavior of the process. Several advantages are then obtainable from these reflection coefficients, like conversion to interval velocities with an optimum calibration either to the well logs or to the velocity analysis curves. The procedure can be applied for detailed stratigraphic interpretations or to improve the resolution of a conventional velocity analysis.  相似文献   

8.
Knowledge of seismic velocities in natural rock formations is needed for several purposes: converting travel-time to reflector depth, efficiently performing data processing such as common-midpoint (cmp) stacking and reflector migration, and finally studying lithofacies. When dip and faulting conditions are mild, all these goals can be reached without too much difficulty.Complex structures can be defined from a geophysicist's standpoint as being those which make it difficult or even impossible to conduct conventional processing operations, such as cmp stacking and post-stack migration. The principal reason for the difficulties encountered lies in the presence of lateral velocity variations strong enough to preclude the use of any processing procedure which would require hyperbolic time- distance curves on cmp trace gathers. This does not necessarily mean the presence of steep dips, but rather intense faulting that puts blocks of very different velocities in contact.Medium velocity can be estimated by using the redundancy of possible migration results. These results must be coherent from shotpoint to shotpoint or from one offset to another. If the velocity-model is unsatisfactory, it can be modified in order to give better coherence to migrated events. Travel-time tomography is another method for obtaining velocity-distributions, but for a successful application it assumes that reflected events can be picked and timed. Because tomography is an inverse method, it lends itself very easily to the introduction of outside information or of a priori constraints.Velocity investigation in complex regions is still in its infancy. Attempting to derive detailed and accurate information for lithofacies studies must be put aside for the time being, all efforts being concentrated obtaining the velocity needed to improve reflector imaging and positioning. Much progress is still necessary before 3-D, P and S velocity surveys can be conducted in all regions with complex geological structures.  相似文献   

9.
Time horizons can be depth-migrated when interval velocities are known; on the other hand, the velocity distribution can be found when traveltimes and NMO velocities at zero offset are known (wavefront curvatures; Shah 1973). Using these concepts, exact recursive inversion formulae for the calculation of interval velocities are given. The assumption of rectilinear raypath propagation within each layer is made; interval velocities and curvatures of the interfaces between layers can be found if traveltimes together with their gradients and curvatures and very precise VNMO velocities at zero offset are known. However, the available stacking velocity is a numerical quantity which has no direct physical significance; its deviation from zero offset NMO velocity is examined in terms of horizon curvatures, cable length and lateral velocity inhomogeneities. A method has been derived to estimate the geological depth model by searching, iteratively, for the best solution that minimizes the difference between stacking velocities from the real data and from the structural model. Results show the limits and capabilities of the approach; perhaps, owing to the low resolution of conventional velocity analyses, a simplified version of the given formulae would be more robust.  相似文献   

10.
The general use of continuous CDP seismic lines means that the neighbourhood of each depth point can be considered according to two sets of co-ordinates: — the co-ordinates of the abscissa on the seismic lines and the reflection time, which allow investigation of the local dip of coherent events; — the co-ordinates of the reflection time and the move out, which allow investigations of the average velocity for these same events. The combination of both investigations for each coherent event is a very convenient operation for the seismologist, and can provide some useful interpretation aids such as velocity profiles, or information on the interval velocities. The principles which we use consist in the examination of a large range of possibilities, of which only the most coherent are chosen. Some examples are shown.  相似文献   

11.
The tau‐p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non‐uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non‐uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable.  相似文献   

12.
Conventional Kirchhoff prestack time migration based on the hyperbolic moveout can cause ambiguity in laterally inhomogeneous media, because the root mean square velocity corresponds to a one-dimensional model under the horizontal layer assumption; it does not include the lateral variations. The shot/receiver configuration with different offsets and azimuths should adopt different migration velocities as they contribute to a single image point. Therefore, we propose to use an offset-vector to describe the lateral variations through an offset-dependent velocity corresponding to the difference in offset from surface points to the image point. The offset-vector is decomposed into orthogonal directions along the in-line and cross-line directions so that the single velocity can be expressed as a series of actual velocities. We use a simple Snell's law-based ray tracing to calculate the travel time recorded at the image point and convert the travel time to an equivalent velocity corresponding to a pseudo-straight ray. The double-square-root equation using such an equivalent velocity in the offset-vector domain is non-hyperbolic and asymmetrical, which improves the accuracy of the migration. Numerical examples using the Marmousi model and a wide azimuth field data show that the proposed method can achieve reasonable accuracy and significantly enhances the imaging of complex structures.  相似文献   

13.
A correct derivation of rms, average and interval velocities from one another and from common depth point stacking velocities requires a clear understanding of the relationships between these velocities. We relate the average velocity to the rms velocity through a “heterogeneity factor” which is a quantity that gives a measure of the degree of velocity heterogeneity in the ground. The interval velocity is a quantity which varies according to the method of its derivation. The difference between rms and stacking velocities depends on the heterogeneity factor and on the length of the spread. Unless allowed for, this difference can reverse the advantages of long spreads and cause large errors in interval velocity determinations. It may be removed through a number of techniques. The accuracy of stacking velocities in the presence of random “noise” is independent of the heterogeneity factor. Relevant expressions can be broken down into simple formulae which give the accuracy quickly and with good precision.  相似文献   

14.
Variations of seismic interval velocities within the cable length cause anomalies in the stacking velocity analyses. Utilizing the approximation of rectilinear ray propagation, i.e. supposing that the velocity changes cause time delays only, it is shown that the stacking velocity anomalies are linearly related to the interval velocity variations. In particular, the stacking velocity anomaly is calculated when the interval velocity of an intermediate layer undergoes a stepwise variation. The amplitude of the anomaly increases with the ratio between horizon depth and cable length. From the forward model, a program for the inversion is derived in order to identify lateral changes of interval velocities from unsmoothed stacking velocity analyses. Some examples of the application of this technique to synthetic and real data are presented.  相似文献   

15.
Amplitude versus offset concepts can be used to generate weighted stacking schemes (here called geo-stack) which can be used in an otherwise standard seismic data processing sequence to display information about rock properties. The Zoeppritz equations can be simplified and several different approximations appear in the literature. They describe the variation of P-wave reflection coefficients with the angle of incidence of a P-wave as a function of the P-wave velocities, the S-wave velocities and the densities above and below an interface. Using a smooth, representative interval velocity model (from boreholes or velocity analyses) and assuming no dip, the angle of incidence can be found as a function of time and offset by iterative ray tracing. In particular, the angle of incidence can be computed for each sample in a normal moveout corrected CMP gather. The approximated Zoeppritz equation can then be fitted to the amplitudes of all the traces at each time sample of the gather, and certain rock properties can be estimated. The estimation of the rock properties is achieved by the application of time- and offset-variant weights to the data samples before stacking. The properties which can be displayed by geo-stack are: P-wave reflectivity (or true zero-offset reflectivity), S-wave reflectivity, and the reflectivity of P-wave velocity divided by S-wave velocity (or ‘pseudo-Poisson's ratio reflectivity’). If assumptions are made about the relation between P-wave velocity and S-wave velocity for water-bearing clastic silicate rocks, then it is possible to create a display which highlights the presence of gas.  相似文献   

16.
基于散度和旋度纵横波分离方法的改进   总被引:3,自引:2,他引:1       下载免费PDF全文
纵、横波的分离是多波多分量地震资料处理中很重要的一步,其分离结果直接影响到后续数据处理的质量.各向同性介质中纵波为无旋场,横波为无散场,因此可以在频率-波数域利用散度和旋度算子对地震记录进行纵、横波分离,但是此处理过程必须知道地表处的纵、横波速度.本文给出了一种估算地表纵、横波速度的方法,可以在纵、横波速度值未知的情况下,将其估算出来.针对弹性波场进行散度和旋度运算时,纵、横波的相位和振幅比发生改变的问题,本文给出了相位和纵、横波振幅比的校正方法.  相似文献   

17.
Stacking velocities in the presence of overburden velocity anomalies   总被引:1,自引:0,他引:1  
Lateral velocity changes (velocity anomalies) in the overburden may cause significant oscillations in normal moveout velocities. Explicit analytical moveout formulas are presented and provide a direct explanation of these lateral fluctuations and other phenomena for a subsurface with gentle deep structures and shallow overburden anomalies. The analytical conditions for this have been derived for a depth-velocity model with gentle structures with dips not exceeding 12°. The influence of lateral interval velocity changes and curvilinear overburden velocity boundaries can be estimated and analysed using these formulas. An analytical approach to normal moveout velocity analysis in a laterally inhomogeneous medium provides an understanding of the connection between lateral interval velocity changes and normal moveout velocities. In the presence of uncorrected shallow velocity anomalies, the difference between root-mean-square and stacking velocity can be arbitrarily large to the extent of reversing the normal moveout function around normal incidence traveltimes. The main reason for anomalous stacking velocity behaviour is non-linear lateral variations in the shallow overburden interval velocities or the velocity boundaries.
A special technique has been developed to determine and remove shallow velocity anomaly effects. This technique includes automatic continuous velocity picking, an inversion method for the determination of shallow velocity anomalies, improving the depth-velocity model by an optimization approach to traveltime inversion (layered reflection tomography) and shallow velocity anomaly replacement. Model and field data examples are used to illustrate this technique.  相似文献   

18.
It has been known since the beginning of reflection seismics that several disturbing events seen in seismic records are caused by waves with S-wave velocities instead of P-wave velocity. When using dynamite and recording with vertical geophones these events are primarily caused by converted waves. On the basis of known P- and S-wave velocities in a certain area a theoretical seismogram is calculated, displaying traveltime as well as energy relation for different wave configurations. By comparison with seismograms recorded in the same area it can be shown that converted wave events can be clearly recognized. These events can be described theoretically. Thus, either more effective computer programs can be applied to eliminate these disturbing events, or these events can be evaluated to get additional information about specific strata.  相似文献   

19.
文中展示了南黄海中古生代沉积地层的成像结果,显示南黄海隆起区存在较稳定的中古生代沉积地层残留区.南黄海中古生代残留沉积地层的成像问题一直是地震资料处理的难点,主要原因是以海底鸣震为主的层间多次波和与中古生界顶界面相关的长程多次波非常发育,致使有效反射波无法准确识别.本文利用平面波域层间多次波的可预测性,对地震数据平面波分解之后进行预测反褶积,较好地消除了层间多次波.利用速度差异分离长程多次波,在有效波速度无法确定的条件下,先从低速的、可以确认的多次波开始进行分离,逐步确认并分离多次波,同时逐步进行有效波的确认和成像速度的尝试,最终得到合适的成像速度场和多次波被充分分离的数据.成像结果对南黄海残留盆地研究有一定借鉴意义.  相似文献   

20.
In reflection surveys and velocity analysis, calculations of interval velocities and layer-thicknesses of a multilayered horizontal structure are often based on Dix's equation which requires the travel times at zero offsets and a prior estimate of the root mean squared velocities.In this paper a method is presented which requires only the reflection travel-time data. A set of equations are derived which relate the interval velocity and thickness of a layer to the reflection travel time from the top and the bottom of that layer, the offset distances and the ray parameter. It is shown that the difference of the offset distances and the difference of the picked travel times of any reflected rays with the same value of ray parameter from the top and the bottom of a horizontal layer can be used to calculate the interval velocity and thickness of that layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号