共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on a three-month-scale standardized precipitation index (SPI-3) computed from the available rainfall data of 13 stations of Niger, meteorological drought trends, periodicities and the relationships with 10 oceanic–atmospheric variables were analysed using the Mann-Kendall test, continuous wavelet transform and cross-wavelet analysis, respectively. The results revealed a significant (p < 5%) increase in drought at five of the 13 stations. A common dominant drought periodicity of 2 years was found at all of the stations, whereas significant periodicities varied from 2 to 32 years at six stations. Among the considered climate indices, South Atlantic sea-surface temperature, Southern Oscillation Index, sea-level pressure, geopotential height and relative humidity from the Atlantic basin oscillated in anti-phase relative to the SPI-3 at an inter-annual to decadal time scale from 1960 to 1990. In this period, relative humidity from the Mediterranean basin and zonal wind oscillated in phase with the drought index. 相似文献
2.
The objective of this study was to examine the streamflow variability of Argentinean Andean basins (22°–52°S). Trends and step changes of seven hydrological variables were analysed. In addition, relationships between the hydrological variables and Pacific Decadal Oscillation (PDO), Niño 3.4, and Southern Annular Mode (SAM) indices were analysed. Most streamflow variables showed upward trends in the northwest and central-western basins, while downward trends were identified in the Patagonia (southwestern) region. Streamflow of the central-western and Patagonian basins was positively correlated with the Niño 3.4 index. Moreover, an inverse relationship with the SAM was found in watersheds south of 37°S. Positive step changes associated with the PDO phases in the north and central-western basins in the mid-1970s were detected, while negative step changes resulted in Patagonia between 1970 and 2000. This research provides new evidence of the influence of major climate modes on streamflow variability in the western rivers of Argentina. 相似文献
3.
Relationships were examined between variability in tropical Atlantic sea level and major climate indices with the use of TOPEX/POSEIDON altimeter and island tide gauge data with the aim of learning more about the external influences on the variability of the tropical Atlantic ocean. Possible important connections were found between indices related to the El Niño–Southern Oscillation (ENSO) and the sea levels in all three tropical regions (north, equatorial, and south), although the existence of only one major ENSO event within the decade of available altimetry means that a more complete investigation of the ENSO-dependence of Atlantic sea level changes has to await for the compilation of longer data sets. An additional link was found with the Indian Ocean Dipole (IOD) in the equatorial region, this perhaps surprising observation is probably an artifact of the similarity between IOD and ENSO time series in the 1990s. No evidence was obtained for significant correlations between tropical Atlantic sea level and North Atlantic Oscillation or Antarctic Oscillation Index. The most intriguing relationship observed was between the Quasi-Biennial Oscillation and sea level in a band centered approximately on 10°S. A plausible explanation for the relationship is lacking, but possibilities for further research are suggested. 相似文献
4.
Since water supply failure is one of the primary impacts of drought, drought risk should be quantified in the context of a lack of available water. To assess the drought risk, water supply system performance indices such as reliability, resiliency, and vulnerability are usually introduced as they correspond to primary drought characteristics, i.e., frequency, duration, and magnitude. In this study, we developed a drought risk index (DRI) through weighted averaging the performance indices derived using bivariate drought frequency analysis. We suggested two types of DRI: observed DRI (DRI_O) and designed DRI (DRI_D). DRI_O was calculated using an observed (or synthesized) time series of water shortages. DRI_D was estimated from the bivariate drought frequency curves, which are the probabilistic magnitudes of water shortages corresponding to a particular duration. The historical maximum drought event that represents the maximum DRI_O has generally been used as the target security level. However, we could establish a practically applicable target security level considering that the future water supply failure risk is represented by DRI_D. We defined regional drought safety criteria in this study by comparing DRI_O and DRI_D. Application of the criteria to the Nakdong river basin in South Korea showed that W1 (Byeongseongcheon) and W4 (Hyeongsangang) had the lowest and highest drought risk, respectively, and the drought safety criteria showed an average range of 5–20 years. 相似文献
5.
Qing He Kwok Pan Chun Mou Leong Tan Bastien Dieppois Liew Juneng Julian Klaus Matthieu Fournier Nicolas Massei Omer Yetemen 《水文研究》2021,35(9):e14356
Ocean–atmosphere modes of climate variability in the Pacific and Indian oceans, as well as monsoons, regulate the regional wet and dry episodes in tropical regions. However, how those modes of climate variability, and their interactions, lead to spatial differences in drought patterns over tropical Asia at seasonal to interannual time scales remains unclear. This study aims to analyse the hydroclimate processes for both short- and long-term spatial drought patterns (3-, 6, 12- and 24-months) over Peninsular Malaysia using the Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, and Palmer Drought Severity Index. Besides that, a generalized least squares regression is used to explore underlying circulation mechanisms of these spatio-temporal drought patterns. The tested drought indices indicate a tendency towards wetter conditions over Peninsular Malaysia. Based on principal component analysis, distinct spatio-temporal drought patterns are revealed, suggesting North–South and East–West gradients in drought distribution. The Pacific El Nino Southern Oscillation (ENSO), the South Western Indian Ocean (SWIO) variability, and the quasi-biennial oscillation (QBO) are significant contributors to the observed spatio-temporal variability in drought. Both the ENSO and the SWIO modulate the North–South gradient in drought conditions over Peninsular Malaysia, while the QBO contributes more to the East–West gradient. Through modulating regional moisture fluxes, the warm phases of the ENSO and the SWIO, and the western phases of the QBO weaken the southwest and northeast monsoon, leading to precipitation deficits and droughts over Peninsular Malaysia. The East–West or North–South gradients in droughts are related to the middle mountains blocking southwest and northeast moisture fluxes towards Peninsular Malaysia. In addition, the ENSO and QBO variations are significantly leading to short-term droughts (less than a year), while the SWIO is significantly associated with longer-duration droughts (2 years or more). Overall, this work demonstrates how spatio-temporal drought patterns in tropical regions are related to monsoons and moisture transports affected by the oscillations over the Pacific and Indian oceans, which is important for national water risk management. 相似文献
6.
T. C. SHARMA 《水文科学杂志》2013,58(6):803-814
Abstract The important elements of a drought phenomenon are the longest duration and the largest severity for a desired return period. These elements form a basis for designing water storage systems to cope with droughts. At times, a third element, drought intensity, is also used and is defined as the ratio of severity to duration. The commonly available statistics for the causative drought variables such as annual rainfall or runoff sequences are the mean, the coefficient of variation and the lag one serial correlation coefficient, and occasionally some indication of the probability distribution function (pdf) of the sequences. The extremal values of the duration and severity are modelled in the present paper using information on the aforesaid parameters at the truncation level equal to the mean of the drought sequence, which is generally taken as the truncation level in the analysis of droughts. The drought severity has been modelled as the product of the duration and intensity with the assumption of independence between them. An estimate of drought intensity has been realized from the concept of the truncated normal distribution of the standardized form of the drought sequences in the normalized domain. A formula in terms of the extremal severity and the T-year return period has been suggested similar to the flood frequency formulae, commonly cited in hydrological texts. 相似文献
7.
Impacts of climate variability and change on drought characteristics in the Niger River Basin,West Africa 总被引:1,自引:0,他引:1
West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986–2005) and future climates (2046–2065 and 2081–2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1–2, 2–4, 4–8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1–3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046–2065) to 2.4 (2081–2100) month year?1 while under RCP8.5, the change ranges from 2.2 (2046–2065) to 3.0 month year?1 (2081–2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change. 相似文献
8.
《水文科学杂志》2012,57(1):57-70
ABSTRACTLeading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures. 相似文献
9.
Drought indices have been commonly used to characterize different properties of drought and the need to combine multiple drought indices for accurate drought monitoring has been well recognized. Based on linear combinations of multiple drought indices, a variety of multivariate drought indices have recently been developed for comprehensive drought monitoring to integrate drought information from various sources. For operational drought management, it is generally required to determine thresholds of drought severity for drought classification to trigger a mitigation response during a drought event to aid stakeholders and policy makers in decision making. Though the classification of drought categories based on the univariate drought indices has been well studied, drought classification method for the multivariate drought index has been less explored mainly due to the lack of information about its distribution property. In this study, a theoretical drought classification method is proposed for the multivariate drought index, based on a linear combination of multiple indices. Based on the distribution property of the standardized drought index, a theoretical distribution of the linear combined index (LDI) is derived, which can be used for classifying drought with the percentile approach. Application of the proposed method for drought classification of LDI, based on standardized precipitation index (SPI), standardized soil moisture index (SSI), and standardized runoff index (SRI) is illustrated with climate division data from California, United States. Results from comparison with the empirical methods show a satisfactory performance of the proposed method for drought classification. 相似文献
10.
The definition of a drought index is the foundation of drought research. However, because of the complexity of drought, there is no a unified drought index appropriate for different drought types and objects at the same time. Therefore, it is crucial to determine the regional applicability of various drought indices. Using terrestrial water storage obtained from the Gravity Recovery And Climate Experiment, and the observed soil moisture and streamflow in China, we evaluated the regional applicability of seven meteorological drought indices: the Palmer Drought Severity Index (PDSI), modified PDSI (PDSI_CN) based on observations in China, self-calibrating PDSI (scPDSI), Surface Wetness Index (SWI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and soil moisture simulations conducted using the community land model driven by observed atmospheric forcing (CLM3.5/ObsFC). The results showed that the scPDSI is most appropriate for China. However, it should be noted that the scPDSI reduces the value range slightly compared with the PDSI and PDSI_CN; thus, the classification of dry and wet conditions should be adjusted accordingly. Some problems might exist when using the PDSI and PDSI_CN in humid and arid areas because of the unsuitability of empiricalparameters. The SPI and SPEI are more appropriate for humid areas than arid and semiarid areas. This is because contributions of temperature variation to drought are neglected in the SPI, but overestimated in the SPEI, when potential evapotranspiration is estimated by the Thornthwaite method in these areas. Consequently, the SPI and SPEI tend to induce wetter and drier results, respectively. The CLM3.5/ObsFC is suitable for China before 2000, but not for arid and semiarid areas after 2000. Consistent with other drought indices, the SWI shows similar interannual and decadal change characteristics in detecting annual dry/wet variations. Although the long-term trends of drought areas in China detected by these seven drought indices during 1961–2013 are consistent, obvious differences exist among the values of drought areas, which might be attributable to the definitions of the drought indices in addition to climatic change. 相似文献
11.
In this study, the patterns of past and future drought occurrences in the Seoul region were analysed using observed historical data from the Seoul weather station located in the Korean Peninsula and four different types of general circulation models (GCMs), namely, GFDL:CM2_1, CONS:ECHO‐G, MRI:CGCM2_3_2 and UKMO:HADGEM1. To analyse statistical properties such as drought frequency duration and return period, the Standardized Precipitation Index was used to derive the severity–duration–frequency (SDF) curve from the drought frequency analysis. In addition, a drought spell analysis was conducted to estimate the frequency and change of drought duration for each drought classification. The results of the analysis suggested a decrease in the frequency of mild droughts and an increase in the frequency of severe and extreme droughts in the future. Furthermore, the average duration of droughts is expected to increase. A comparison of the SDF relationship derived from the observed data with that derived via the GCMs indicated that the drought severity for each return period was reduced as drought duration increased and that the drought severity derived from the GCMs was severer than the severity obtained using the observed data for the same duration and return period. Furthermore, among the four types of GCMs used in this study, the MRI model predicted the most severe future drought for the Seoul region, and the SDF curve derived using the MRI model also resulted in the highest degree of drought severity compared with the other GCMs. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Dimitrios Myronidis Dimitrios Fotakis Konstantinos Ioannou Konstantina Sgouropoulou 《水文科学杂志》2013,58(15-16):2005-2019
ABSTRACTTen notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively. 相似文献
13.
AbstractThis study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.Editor Z.W. Kundzewicz; Associate editor C.-Y. XuCitation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335. 相似文献
14.
《中国科学:地球科学(英文版)》2015,(10)
Soil moisture droughts can trigger abnormal changes of material and energy cycles in the soil-vegetation-atmosphere system,leading to important effects on local ecosystem,weather,and climate.Drought detection and understanding benefit disaster alleviation,as well as weather and climate predictions based on the understanding the land-atmosphere interactions.We thus simulated soil moisture using land surface model CLM3.5 driven with observed climate in China,and corrected wet bias in soil moisture simulations via introducing soil porosity parameter into soil water parameterization scheme.Then we defined soil moisture drought to quantify spatiotemporal variability of droughts.Over the period from 1951 to 2008,40%of months(to the sum of 12×58)underwent droughts,with the average area of 54.6%of total land area of Mainland China.The annual monthly drought numbers presented a significant decrease in arid regions,but a significant increase in semi-arid and semi-humid regions,a decrease in humid regions but not significant.The Mainland as a whole experienced an increasing drought trend,with77.3%of areal ratio of decrease to increase.The monthly droughts in winter were the strongest but the weakest in summer,impacting 54.3%and 8.4%total area of the Mainland,respectively.The drought lasting three months or more occurred mainly in the semi-arid and semi-humid regions,with probability51.7%,even77.6%,whereas those lasting 6 and 12 months or more impacted mainly across arid and semi-arid regions. 相似文献
15.
16.
Global upper ocean heat content and climate variability 总被引:1,自引:2,他引:1
Peter C. Chu 《Ocean Dynamics》2011,61(8):1189-1204
Observational data from the Global Temperature and Salinity Profile Program were used to calculate the upper ocean heat content
(OHC) anomaly. The thickness of the upper layer is taken as 300 m for the Pacific/Atlantic Ocean and 150 m for the Indian
Ocean since the Indian Ocean has shallower thermoclines. First, the optimal spectral decomposition scheme was used to build
up monthly synoptic temperature and salinity dataset for January 1990 to December 2009 on 1° × 1° grids and the same 33 vertical
levels as the World Ocean Atlas. Then, the monthly varying upper layer OHC field (H) was obtained. Second, a composite analysis was conducted to obtain the total-time mean OHC field ([`([`(H)])] \bar{\bar{H}} ) and the monthly mean OHC variability (
[(\textH)\tilde] \widetilde{\text{H}} ), which is found an order of magnitude smaller than
[^(\textH)] \widehat{\text{H}} . Third, an empirical orthogonal function (EOF) method is conducted on the residue data (
[^(\textH)] \widehat{\text{H}} ), deviating from
[(\textH)\tilde] \widetilde{\text{H}} +
[(\textH)\tilde] \widetilde{\text{H}} , in order to obtain interannual variations of the OHC fields for the three oceans. In the Pacific Ocean, the first two EOF
modes account for 51.46% and 13.71% of the variance, representing canonical El Nino/La Nina (EOF-1) and pseudo-El Nino/La
Nina (i.e., El Nino Modoki; EOF-2) events. In the Indian Ocean, the first two EOF modes account for 24.27% and 20.94% of the
variance, representing basin-scale cooling/warming (EOF-1) and Indian Ocean Dipole (EOF-2) events. In the Atlantic Ocean,
the first EOF mode accounts for 49.26% of the variance, representing a basin-scale cooling/warming (EOF-1) event. The second
EOF mode accounts for 8.83% of the variance. Different from the Pacific and Indian Oceans, there is no zonal dipole mode in
the tropical Atlantic Ocean. Fourth, evident lag correlation coefficients are found between the first principal component
of the Pacific Ocean and the Southern Oscillation Index with a maximum correlation coefficient (0.68) at 1-month lead of the
EOF-1 and between the second principal component of the Indian Ocean and the Dipole Mode Index with maximum values (around
0.53) at 1–2-month advance of the EOF-2. It implies that OHC anomaly contains climate variability signals. 相似文献
17.
《Journal of Atmospheric and Solar》1999,61(1-2):63-72
Computer simulations of the impact on climate of solar variability generally fall into four categories. First, there are lower atmosphere GCM experiments, in which enhanced solar activity is represented by changes in spectrally integrated solar constant. Secondly, there are GCM studies of the dynamical response of the middle atmosphere to changes in solar ultraviolet, mainly concentrating on the northern hemisphere winter, and how these impact the troposphere. These studies have been instructive in providing an understanding of some of the mechanisms involved but, because of the very different nature of the assumptions made, give rather different suggestions as to potential patterns of change. In particular predicted zonal mean temperature changes in the lower stratosphere are usually of opposite sign in these two types of experiment. None of these GCM studies include interactive photochemistry and the third category of modelling work is concerned with the photochemical response of the middle atmosphere to enhanced solar ultraviolet. These generally employ 2D models to predict changes in ozone and other gaseous species. Recently it has been realised that the responses (to a variety of external forcings) of the lower and middle atmospheres are linked through both radiative and dynamical mechanisms and should not be viewed in isolation from each other. Thus the fourth type of modelling study, which is still in its infancy, attempts to represent solar variability by realistic changes in both irradiance and ozone concentrations. In this paper these various modelling studies are reviewed and some new results presented which confirm previous theoretical suggestions that, in the northern hemisphere winter, the atmosphere may respond to solar changes in a similar way as to the injection of volcanic aerosol. The implications of the results of the model studies for the detection of solar-induced climate change are discussed. 相似文献
18.
The changing environment enhances the hydrological cycle and increases the frequency of extreme floods. In this paper, the impacts of climate variability on flood season segmentation are determined and the scientific basis for determining corresponding flood limiting water levels (FLWLs) is provided. Climate variation was determined and then the flood season was divided into several sub-seasons using the results of the set pair analysis method (SPAM) and four indices; peak floods crossing the transitional periods were sampled to obtain a design flood hydrograph; and, finally, seasonal FLWLs were determined for reservoir operation. The performance of this reservoir staging operation was evaluated for a case study in the Chengbihe Reservoir, China. 相似文献
19.
Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections 总被引:1,自引:0,他引:1
Jehanzaib Muhammad Sattar Muhammad Nouman Lee Joo-Heon Kim Tae-Woong 《Stochastic Environmental Research and Risk Assessment (SERRA)》2020,34(1):7-21
Stochastic Environmental Research and Risk Assessment - Climate change is a main driving force that affects the hydrological cycle, leading to an increase in natural hazards. Among these natural... 相似文献
20.
Impacts of climate variability on water quality with best management practices in sub‐tropical climate of USA 下载免费PDF全文
Efficiency of non‐point source pollution control methods may be altered in future climate. This study investigated climate change impacts on sediment and nutrient transport, and efficiency of best management practices (BMPs), in the Upper Pearl River Watershed (UPRW) in Mississippi. The Soil and Water Assessment Tool was applied to the UPRW using observed flow, sediment and nutrient data. Water quality samples were collected at three US geological survey gauging stations. The model was successfully calibrated and validated for daily time steps (Nash Sutcliffe efficiency and coefficient of determination – R2 up to 0.7) using manual and automatic (sequential uncertainty fitting version 2) methods from February 2010 to May 2011. Future weather scenarios were simulated using the LARS‐WG model, a stochastic weather generator, with Community Climate System Model, global climate model, which was developed by the National Center for Atmospheric Research in the USA. On the basis of the Special Report on Emissions Scenarios A1B, A2 and B1 of the Intergovernmental Panel on Climate Change, climate change scenarios were simulated for the mid (2046–2065) and late (2080–2099) century. Effectiveness of four BMPs (Riparian buffer, stream fencing, sub‐surface manure applications and vegetative filter strips) on reducing sediment and nutrient were evaluated in current and future climate conditions. Results show that sediment, nitrogen and phosphorus loadings will be increased up to a maximum of 26.3%, 7.3% and 14.3%, respectively, in future climate conditions. Furthermore, the effectiveness of BMPs on sediment removal will be reduced in future climate conditions, and the efficiency of nitrogen removal will be increased, whereas phosphorus removal efficiency will remain unchanged. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献