首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The ocean signal for this study is the sea surface height due to the slowly varying (greater than 5-day) ocean processes, which are predominantly the deep ocean mesoscale. These processes are the focus of present assimilation systems for monitoring and predicting ocean circulation due to ocean fronts and eddies and the associated environmental changes that impact real time activities in areas with depths greater than about 200 m. By this definition, signal-to-noise may be estimated directly from altimeter data sets through a crossover point analysis. The RMS variability in crossover differences is due to instrument noise, errors in environmental corrections to the satellite observation, and short time period oceanic variations. The signal-to-noise ratio indicates that shallow areas are typically not well observed due to the high frequency fluctuations. Many deep ocean areas also contain significant high frequency variability such as the subpolar latitudes, which have large atmospheric pressure systems moving through, and these in turn generate large errors in the inverse barometer correction. Understanding the spatial variations of signal to noise is a necessary prerequisite for correct assimilation of the data into operational systems.  相似文献   

2.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

3.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

4.
《Marine Geodesy》2013,36(3-4):383-397
The Jason-1 Operational Sensor Data Record (OSDR) is intended as a wind and wave product that is aimed towards near-real–time (NRT) meteorological applications. However, the OSDR provides most of the information that is required to determine altimetric sea surface heights in NRT. The exceptions include a sufficiently accurate orbit altitude, and pressure fields to determine the dry troposphere path delay correction. An orbit altitude field is provided on the OSDR but has accuracies that range between 8–25 cm (RMS). However, tracking data from the on-board BlackJack GPS receiver are available with sufficiently short latency for use in the computation of NRT GPS-based orbit solutions. The orbit altitudes from these NRT orbit solutions have typical accuracies of < 3.0 cm (RMS) with a latency of 1–3 h, and < 2.5 cm (RMS) with a latency of 3–5 h. Meanwhile, forecast global pressure fields from the National Center for Environmental Prediction (NCEP) are available for the NRT computation of the dry troposphere correction. In combination, the Jason-1 OSDR, the NRT GPS-based orbit solutions, and the NCEP pressure fields can be used to compute sea surface height observations from the Jason-1 mission with typical latencies of 3–5 h, and have differences with those from the 2–3 day latency Interim Geophysical Data Records of < 5 cm (RMS). The NRT altimetric sea surface height observations are potentially of benefit to forecasting, tactical oceanography, and natural hazard monitoring.  相似文献   

5.
We present calibration results from Jason-1 (2001-) and TOPEX/POSEIDON (1992-) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

6.
《Marine Geodesy》2013,36(3-4):239-259
We present calibration results from Jason-1 (2001–) and TOPEX/POSEIDON (1992–) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

7.
仲昌维  杨俊钢 《海洋科学》2013,37(10):78-85
对19 a 的TOPEX/POSEIDON(以下称T/P)和Jason-1 卫星高度计测高数据进行调和分析, 得到渤黄东海海域的8 个主要分潮(M2、S2、N2、K2、K1、O1、P1 和Q1)。提出一种将两类卫星高度计数据统一的方法, 消除了因两类卫星高度计校正算法等不同所导致的相互之间的偏差。变轨后的T/P与Jason-1 卫星加密了高度计对潮汐观测的空间分布。通过对交叉点处升轨与降轨的潮汐调和分析结果进行比较, 检验调和分析方法及高度计数据的可靠性; 将基于高度计数据的调和分析结果与验潮站资料进行比较, 以检验其正确性。4 个主要分潮(M2、S2、K1、O1)振幅之差的均方根介于1.0~1.8 cm, 迟角之差的均方根介于4.1°~7.8°。与已有研究结果相比, 调和分析结果的精确性有所提高。在此基础上, 综合变轨前后两类高度计测高数据的调和分析结果, 给出并分析了渤黄东海4 个主要分潮的同潮图。  相似文献   

8.
Sea surface height anomaly maps of realistic eddy activity were obtained by applying space-time optimum interpolation to altimeter data. Analysis error and rate of reconstructing eddy signals were investigated by taking account of: 1) dependency on orbit configurations of single and multiple altimeters; 2) dependency on space-time scales of realistic, dominant eddies; and 3) effect of space-time scales of eddy propagation. Large-scale sea surface height anomalies are subtracted from altimeter data by applying an along-track filter to allow easy handling of eddy signals. The space-time scales of the first-guess error in the optimum interpolation are statistically evaluated by fitting a space-time anisotropic Gaussian function to space-time-distributed correlation coefficients of sea surface height using the TOPEX data. The results of the optimum interpolation clarify the followings: 1) ERS has a better capability of reconstructing eddy signals than TOPEX. Comparison of maps from multi-altimeter data shows that TOPEX+ERS has a better capability than Jason−1+TOPEX in lower latitudes and vice versa in higher latitudes, though the differences are small. 2) The small space-time scale yields a low reconstruction rate in marginal seas and alongside the equator. The persistent timescale is large, and westward propagation is dominant in the subtropical and subarctic regions, where the reconstruction rates are high. 3) The optimum interpolation, taking account of eddy propagation, provides higher reconstruction rates than that taking no account of the propagation. The effect of propagation on the optimum interpolation is greater when it is applied to single-altimeter data than to multi-altimeter data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
As part of the Vertical Offshore Reference Frames (VORF) project sponsored by the U. K. Hydrographic Office, a new model for Sea Surface Topography (SST) around the British Isles has been developed. For offshore areas (greater than 30 km from the coast), this model is largely derived from satellite altimetry. However, its accuracy and level of detail have been enhanced in coastal areas by the inclusion of not only the 60 PSMSL tide gauges with long-term records around the coasts of the United Kingdom and Ireland but also some 385 gauges established at different epochs and for different observation spans by the U. K. Admiralty. All tide gauge data were brought into a common reference frame by a combination of datum models and direct GPS observations, but a more significant challenge was to bring all short-term sea level observations to an unbiased value at a common epoch. This was achieved through developing a spatial-temporal correlation model for the variations in mean sea level around the British Isles, which in turn meant that gauges with long-term observation spans could be used as control points to improve the accuracy of Admiralty gauges. It is demonstrated that the latter can contribute point observations of mean sea level (MSL) with a precision of 0.078 m. A combination of least squares collocation and interpolation was developed to merge the coastal point and offshore gridded data sets, with particular algorithms having to be developed for different configurations of coastal topology. The resulting model of sea surface topography is shown to present a smooth transition from inshore coastal areas to offshore zones. Further benefits of the techniques developed include an enhanced methodology for detecting datum discontinuities at permanent tide gauges.  相似文献   

10.
葛磊  徐永生  尹宝树 《海洋科学》2016,40(2):128-135
压力传感逆式回声仪(pressure-sensor-equipped inverted echo sounders,PIES)可以用来测量海底压力和声波从海底到海面的传播时间。海底压力和声波传播时间分别被用来估计水体质量变化(正压)和比容变化(斜压)对海面高度距平的贡献。对由PIES在日本海西南海域现场观测数据得到的海面高度距平(PIES SLA)与卫星高度计海面高度距平(Sat SLA)进行了比较研究。利用相关分析法,对PIES SLA和沿轨T/P卫星、沿轨ERS-2卫星测得的海面高度距平(TP SLA、ERS-2 SLA)进行了比较;对PIES SLA和AVISO网格化海面高度距平进行了比较,估计可能的误差来源,并分析PIES SLA正压部分和斜压部分对SLA的贡献。比较发现,PIES SLA和Sat SLA的相关系数较高,且均方根误差较小,并且对特定区域和特定站点产生误差可能的原因进行了进一步的探讨。通过研究,有以下结论:(1)相对于湾流和黑潮地区,这一区域正压部分对海面高度的贡献相对较大;(2)如果再考虑斜压变化对海面高度的贡献,PIES SLA和Sat SLA相关系数会有所提升;(3)在高能区PIES SLA和Sat SLA相关系数较高,符合得相对比较好。总的来说,在日本海地区,PIES SLA和Sat SLA相关系数较高,具有较高的一致性,能为我国海洋二号(HY-2)等卫星高度计的校验提供一种可靠的方式。该研究对于PIES的研发和设计以及对于PIES的布放位置的选择都有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号