首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对东秦岭地区河南嵩县一带进行地质调查,发现了一系列具有一定规模的含稀土碱性碳酸岩矿脉并在其中发现一种特殊的钡解石矿物.依据该钡解石主量元素组成,计算分子式为Ba104Cao81Sral4(CO3)2,为锶钡解石,LA-ICP-MS分析表明其富Na、K、Fe、Mn、Pb、REE、Y等元素,稀土元素总量最高为4 080× ...  相似文献   

2.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

3.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   

4.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

5.
The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20–125 m long and 10–40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.  相似文献   

6.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

7.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

8.
We present the results of a study on gabbroic rocks, syenites, pegmatites, carbonatites, and hydrothermal products of the Oshurkovo apatite-bearing massif. The results include Nd and Sr isotope ratios; the isotope compositions of carbon and oxygen in calcite; oxygen in apatite, magnetite, and silicate minerals (phlogopite, titanite, diopside, amphibole, K-feldspar, and quartz); sulfur in barite; and hydrogen in mica. The isotopic data are close to the EM-1 enriched mantle values and confirm a comagmatic relationship between the gabbros and carbonatites. The binary plot ?Nd vs. 87Sr/86Sr demonstrates strong differentiation between silicate rocks and carbonatites, as is the case with the other Late Mesozoic carbonatite occurrences of southwestern Transbaikalia. The oxygen isotope composition of all comagmatic phases also falls within the range of mantle values. A clear trend toward heavier oxygen and lighter carbon isotope compositions is observed in all successively emplaced phases, which is consistent with a trend defined by hydrothermal products formed under the influence of the parent magma chamber. Carbonates formed during the greenstone alteration of gabbroic rocks are enriched in the light oxygen isotope (δ18O from ?2.8 to ?7.3‰), suggesting a contribution of vadose water.  相似文献   

9.
全球范围内出露的碳酸岩大多为钙质、镁质、铁质碳酸岩,少量为钠质和硅质碳酸岩,极少有富Sr碳酸岩的报道,其岩石成因、资源意义及对碳酸岩岩浆演化的指示意义尚不清楚。本次在四川省牦牛坪稀土矿区南部包子山稀土矿床的露天采坑中发现了超级富Sr的碳酸岩,其呈不规则的脉状侵入到构造角砾岩中。岩石呈紫色-淡紫色,微晶-斑状结构,斑晶主要为萤石,基质主要为菱锶矿、方解石、氟碳铈矿、氟碳钙铈矿、金云母、重晶石并含少量的金属硫化物和氧化物。全岩的微量元素分析表明,其稀土元素总量(∑REE)达3.5%~6.1%,Sr含量达19.0%~27.7%,已超过稀土矿床和锶矿床的工业品位要求。岩石中的中、重稀土元素含量占稀土元素总量的1.14%~1.77%,一些高价值稀土元素含量较高,如Pr(939×10~(-6)~1399×10~(-6))、Nd(2783×10~(-6)~3937×10~(-6))、Gd(237×10~(-6)~320×10~(-6)),因此除轻稀土元素外,中、重稀土和锶元素也具有重要的资源意义。岩石强烈富集REE、Sr、Ba,而明显亏损P、Nb、Ta、Zr、Hf元素,可能与岩浆演化过程中锆石和其它基性矿物的结晶分离有关。全岩的Sr-Nd同位素组成与牦牛坪、里庄稀土矿床的碳酸岩相似,表明它们为同源岩浆产物。笔者认为,富Sr的碳酸岩代表了碳酸岩岩浆演化晚期的产物,REE、Sr、Ba、F和S元素均在岩浆演化晚期的碳酸岩中高度富集。碳酸岩岩浆超浅成侵位至构造角砾岩中,并与下渗的大气水相遇导致岩浆的淬冷和微晶-斑状结构的形成。早期基性矿物(如霓辉石、黑云母)及碳酸盐矿物(如方解石、白云石等)的结晶分离是造成晚期碳酸岩中稀土元素富集的重要原因。富Sr碳酸岩中石英斑晶的发现和其较低的SiO_2含量表明碳酸岩岩浆演化晚期可能是硅饱和的,且这种岩浆具有很低的SiO_2溶解能力。以菱锶矿(体积分数 50%)为主要碳酸盐矿物的稀土碳酸岩可能代表了一种新的碳酸岩类型,明显不同于已知的钙质、镁质、铁质和钠质碳酸岩。  相似文献   

10.
The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite ( REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520–1,500). Calciocarbonatites ( REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95–160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (Nd 1.4–5.4, 87Sr/86 Sr<Bulk Earth) indicate a depleted mantle source for the alkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and represents the only occurrence of carbonatite and kimberlite rocks in the Andes.  相似文献   

11.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

12.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

13.
The apatite-bearing carbonate rocks at Eppawala, Sri Lanka occur as massive, discontinuous bodies in a Precambrian, high-grade metamorphic terrain, which weather to form economically important phosphate deposits. The ore bodies at Eppawala contain =42% P 2O 5, and citric acid solubility of different components varies from 4 to 6%. The parent rocks are mainly made up of calcite, dolomite and apatite, with lesser amounts of ilmenite, magnetite, pyrite, forsterite, phlogopite, enstatite, magnesite, diopside, tremolite and spinel. Most of minerals show an euhedral habit, with a wide range of crystal sizes (from a few millimetres to several decimetres). The Eppawala rocks are characterised by low silica (=0.41%), high phosphorous (=10.58%) and high strontium content (2,960–6,819 ppm). Concentrations of light rare-earth elements in these rocks are comparably higher than those of marbles. The REE fractionation of these rocks is pronounced, and La/Yb ratios vary between 14 and 43. Both apatite and calcite show markedly elevated strontium levels (=0.6%). The d 13C PDB and d 18O SMOW values of the carbonates are in the range of –3.4 to –2.2 and 7.7 to 16.4‰ respectively. The euhedral habit, as well as the presence of major quantities of apatite and considerable amounts of iron-bearing minerals suggest that the ore host rock has genetic links to an igneous source rather than to an intensely metamorphosed limestone. The higher light REE contents of the rocks, compared to marbles, also argue against a metamorphic or sedimentary origin. The Sr/Mn and Ce/La ratios in the apatite are ~40 and ~2 respectively, suggesting that they were formed in a carbonatite magma. The markedly increased REE concentrations in the bulk chemistry of the rocks have been shown to be mainly controlled by the content of phosphate minerals. Compared to most carbonatites, the Eppawala rocks are generally depleted in selected trace elements, particularly Ba, Nb, Th, V, U and Zr. This depletion may be due to either a primary infertility of the parent magma with regard to such trace elements, or it is a result of fractional crystallisation during the rock formation. The stable isotope ratios do not plot within the defined "mantle carbonatite box", but still lie within the broader range of carbonatitic rocks. With these data at hand, it can be readily argued that the mode of occurrence, petrography and geochemistry of the Eppawala apatite-bearing carbonates provide conclusive evidence of their carbonatitic origin.  相似文献   

14.
The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.  相似文献   

15.
白云鄂博碳酸岩型REE-Nb-Fe矿床是世界上最大的稀土矿床。稀土矿石产于整个白云石碳酸岩体和部分脉状碳酸岩中。对比世界上20余个火成碳酸岩地区的特征后发现,白云鄂博地区完全具备国外火成碳酸岩区的地质特征。在岩石、矿石组合上,本区也发育一套碳酸岩+超基性岩+碱性基性岩(含基性熔岩)+碱性岩+稀土矿石+铁矿石组合;在矿物组合上,以白云石为主,方解石次之,伴生一套碱性闪石、长石、霓石、磷灰石、萤石、磁铁矿、稀土矿物组合;在全岩化学成分、微量元素、稀土元素和Sr、Nd、Pb、C、O同位素上,这些岩石具有一定的亲缘关系,有着共同的来源;在岩体的形态与岩石组构上,它们以岩席、岩筒和脉岩的形式出现,并发育有强烈的熔离作用与流动构造;在区域构造上,发育隐伏穹窿构造、岩筒构造和巨型断裂汇聚构造。综合分析上述特征表明:白云鄂博地区具有中元古代破火山机构的痕迹,赋矿白云石碳酸岩体则是顺层侵入的火成碳酸岩体,东矿、主矿可能是一个火山颈构造控矿,而赋矿白云石碳酸岩体西南侧的苏木图矿床则是隐伏岩筒构造控矿。  相似文献   

16.
Based on a detailed mineral-chemical investigation of apatite from a series of carbonatites and associated silicate volcanic rocks of the Kaiserstuhl tertiary alkaline volcanic centre, evidence for a new substitution mechanism was found within the hydroxyapatite group, yielding the following simplified formula: (Ca, Sr, LREE)10(SiO4)x(CO3)x(PO4)6–2x(OH, F)2 with 03 2– and SiO 4 4– for PO 4 3– ; however, excess charge may be subsequently adjusted by CO3OH3– partly accompanied by the REE in the Ca site.  相似文献   

17.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

18.
A dike–vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite–ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar–39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite–ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5–11) and carbonatite (4.5–17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9–15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.  相似文献   

19.
Several massifs of very old carbonatites have been discovered in the Archaean granulitic block of In'Ouzzal (Western Ahaggar, Algeria). These carbonatites are original since they are associated with Silica — saturated syenitic magmatism and present, in the late stages of evolution, a very uncommon mineralogy, with silicate minerals, especially wollastonite, allanite, and quartz. The mineralogy, C and O isotopes and R.E.E. distributions indicate that the late stages of crystallization occurred under high SiO2 activities, and produced the uncommon mineralogy and extremely high R.E.E. concentrations in phosphate minerals apatite and britholite. Interaction with continental crust is a possible mechanism to explain the original features of these carbonatite complexes.  相似文献   

20.
Tapira is an alkaline silicate–carbonatite complex belonging to the kamafugite-carbonatite association in the Late-Cretaceous Alto Paranaíba Igneous Province (APIP). It is dominated by coarse-grained plutonic rocks (bebedourite – a phlogopite-, apatite-, and perovskite-rich clinopyroxenite – with subordinated dunites, wehrlites, carbonatites and phoscorites). The plutonic rocks are crosscut by fine-grained ultramafic alkaline rocks (phlogopite picrites, bebedouritic dikes) and fine-grained carbonatites. Both types of dike-rocks show petrographic evidence of the coexistence of immiscible silicate and carbonatite liquids, such as carbonate ocelli present in the silicate rocks and, more rarely, silicate ocelli within carbonatites. A detailed geochemical study of the rock types in the complex, with emphasis on the fine-grained varieties, showed that whilst some rocks may be related to each other through crystal fractionation (e.g. phlogopite picrites and bebedouritic dikes), others display anomalous trace-element behaviour that cannot be readily explained by the fractionation of a particular phase or combination of phases. We interpret such anomalous geochemical signatures as produced by silicate–carbonate liquid immiscibility, on the basis of available experimental data on partition coefficients between coexisting immiscible liquids. The immiscibility signatures comprise: (a) decoupling of geochemical pairs, such as Nb–Ta and Zr–Hf; (b) rotation of REE patterns, which cross over the patterns of the primitive liquids; and (c) matching and opposite enrichment-depletion trace elements relationships in spider diagrams of conjugate immiscible liquids. We suggest that, once established, such geochemical signatures are very difficult to erase during the subsequent petrogenetic evolution processes, which may result in superimposed conflicting signatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号