首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an algorithm for synthesizing the light curve of a close binary consisting of a normal star (a red dwarf that fills its Roche lobe) and a spherical star (a white dwarf). The spherical component is surrounded by an elliptical accretion disk with a complex shape: it is geometrically thin near the spherical star and geometrically thick at the edge of the disk. An additional complication is presented by the presence of a one-or two-armed spiral pattern at the inner surface of the disk. The maximum height of the spiral arm above the disk surface is located at ~9 R d , and the height decreases exponentially as the arm approaches the inner regions of the disk. Shielding of the inner hot parts of the disk by the crests of the spirals results in the formation of “steps” in out-of-eclipse parts of the orbital light curves. The algorithm takes into account the presence of a “hot line” by the lateral surface of the disk, making it possible to model binary systems in both quiescence and outburst. In the latter case, the hot line degenerates into a small bulge at the outer lateral surface of the disk, which can be considered an analog of a hot spot. The algorithm was applied to the orbital light curve of the cataclysmic binary IP Peg during its October 30, 2000, outburst. To explain the variations of the out-of-eclipse brightness of the system during the outburst, it is necessary to include the presence of a one-armed spiral wave at the inner surface of the disk, close to the periastron of the elliptical disk. We have obtained the parameters of IP Peg during the outburst for various models of the system.  相似文献   

2.
Results of spectral observations of the isolated Ae Herbig star CQ Tau obtained in 1995–1998 in the Hα line and near the sodium resonance doublet are presented, together with simultaneous photometric monitoring of the star. CQ Tau is a member of the family of young UX Ori stars with nonperiodic Algol-like brightness decreases. The star is surrounded by an accretion disk, in which its emission-line spectrum and part of its absorption-line spectrum are formed. The strong variability of the Hα, D NaI, and HeI 5876 Å lines testifies that the gaseous disk is appreciably inhomogeneous in both the radial and azimuthal directions. This inhomogeneity probably results from uneven feeding by the circumstellar material from the peripheral regions of the circumstellar disk. Over the four years of observations, we observed the star in deep minima three times (ΔV~2). On these nights, an increase in the Hα equivalent width followed the decrease in radiation flux. In the two deepest minima, the normally two-component line profile had only a single component with a nearly symmetrical profile. This behavior of the Hα line is in good agreement with the results of numerical modeling of Algol-like minima and can be used to estimate the parameters of the dust clouds eclipsing the star and inner accretion disk. These estimates suggest that the circumstellar dust clouds can approach very close to the star and be sublimated there.  相似文献   

3.
The results of photometric observations of the dwarf nova GY Cnc in the Rc filter acquired in 2013–2015 (~3900 orbital cycles, 19 nights in total) are presented, including observations during its outburst in April 2014. The binary’s orbital elements have been refined. The orbital period has changed only insignificantly during the ~30 000Porb since the earlier observations; no systematic O–C variations were detected, only fluctuations within 0.004d on time scales of 1500–2000Porb. A “combined” model is used to solve for the parameters of GY Cnc during two states of the system. The flux from the white dwarf is negligible due to the star’s small size. The temperature of the donor star, T2 ~ 3667 K (Sp M0.2 V), varies between 3440 and 3900 K (Sp K8.8–M1.7 V). The semi-major axis of the disk is a ~ 0.22a0, on average. In quiescence, a varies within ~40%. The disk has a considerable eccentricity (e ~ 0.2?0.3) for a < 0.2a0. The disk shape becomes more circular (e < 0.1) with increasing a. The outburst of GY Cnc was associated with increased luminosity of the disk due to the parameter αg (related to the viscosity of the disk material) decreasing to 0.1–0.2 and the temperature in the inner parts of the disk increasing twofold, to Tin ~ 95 000 K. These changes were apparently due to the infall of matter onto the surface of the white dwarf as the outburst developed. All parameters of the accretion disk in quiescence display considerable variations about their mean values.  相似文献   

4.
Our long-time monitoring of the B[e] star and transient X-ray source CI Cam during quiescence following the 1998 outburst demonstrates that the complex, stratified circumstellar envelope has tended to stabilize after this structure was perturbed by the passage of a shock wave from the outburst. The star’s U BV R brightness shows slow, possibly cyclic, variations with an amplitude of about 0.2m. We determined the spectral type of the primary, B4III-V, based on the widths of the absorption wings of high-numbered Balmer lines. A Doppler shift of 460 km/s was detected for the Hell λ4686 Å emission line. The shifts in this line yield an orbital period of 19.41 days, which is also manifested itself in the photometric data as a wave with a V amplitude of 0.034m. The orbit is elliptical, with an eccentricity of 0.62. It is most likely that the secondary is a white dwarf surrounded by an accretion disk. The primary’s mass exceeds 12 M . The system may be at a late stage of its evolution, after the stage of mass exchange.  相似文献   

5.
We have modeled the Hα, Hβ, and Hγ (Balmer series), P14 (Paschen series), and Brγ (Brackett series) hydrogen lines formed in the inner regions of the accretion disk around the Herbig Ae star UX Ori. Our calculations are based on spectra obtained with the Nordic Optical Telescope (NOT) and the IRTF. We computed a grid of non-LTE models for a radiating area in the accretion disk and determined the basic parameters of the lines using the method of Sobolev. Analyzing the theoretical and observed line profiles, equivalent widths, and luminosities, we have estimated the accretion rate and electron-temperature distribution in the inner parts of the accretion disk. The accretion rate of UX Ori is about $\dot M_a = (3 - 10) \times 10^{ - 9} M_ \odot /yr$ , and the temperature distribution is consistent with the power law T(r)=T(r *)(r/r *)?1/n , where the electron temperature near the stellar surface T(r *) is 15000–20000 K and the power-law index n≈2–3 is about two to three. The resulting value for $\dot M_a $ eliminates problems connected with the application of magnetospheric accretion models to Herbig Ae/Be stars. Another important conclusion is that, at the estimated accretion rate, the energy release is substantially (about two orders of magnitude) lower than the stellar luminosity. Therefore, the optical radiation of UX Ori accretion disks cannot appreciably contribute to the observed variability of these stars, which must be determined mainly by variability in the circumstellar extinction.  相似文献   

6.
We have determined the physical (T eff, logg, ζ) and kinematic (V e sini,V r ) parameters and abundances for 14 chemical elements in the atmosphere of the “antiflare” variable RZ Psc, using medium-resolution spectra obtained with the Coudé spectrographs of the 6-m telescope of the Special Astrophysical Observatory and the Crimean Astrophysical Observatory 2.6-m Shain telescope. The chemical composition of the star is characterized by a slight metal deficiency; however, the iron and calcium abundances are consistent with the solar values within the errors. We also detected a peculiar dip (depression) of the continuum level near the Hα line. Assuming that this depression and the photospheric Hα line have independent origins, we calculated the hydrogen abundance X in the atmosphere of RZ Psc. The resulting value X=0.70 (of the solar value) implies a relative deficiency of hydrogen. Together with the spatial location of the star, these properties provide evidence that RZ Psc is an evolved star, most likely belonging to population II.  相似文献   

7.
We present results of two-dimensional hydrodynamical simulations of mass transfer in the close binary system β Lyr for various radii of the accreting star and coefficients describing the interaction of the gaseous flow and the main component (primary). We take the stellar wind of the donor star into account and consider various assumptions about the radiative cooling of the gaseous flow. Our calculations show that the initial radius of the flow corresponding to our adopted mass-transfer rate through the inner Lagrange point (L1) of (1–4) × 10?5M/yr is large: 0.22–0.29 (in units of the orbital separation). In all the models, the secondary loses mass through both the inner and outer (L1 and L2) Lagrange points, which makes the mass transfer in the system nonconservative. Calculations for various values of the primary radius show a strong dependence on the coefficient fv that models the flow-primary interaction. When the radius of the primary is 0.5, there is a strong interaction between the gas flow from L1 and the flow reflected from the primary surface. For other values of the primary radius (0.1 and 0.2), the flow does not interact directly with the primary. The flow passes close to the primary and forms an accretion disk whose size is comparable to that of the Roche lobe and a dense circum-binary envelope surrounding both the disk and the binary components. The density in the disk varies from 1012 to 1014 cm?3, and is 1010–1012 cm?3 in the circum-binary envelope. The temperature in the accretion disk ranges from 30000 to 120000 K, while that in the circum-binary envelope is 4000–18000 K. When radiative cooling is taken into account explicitly, the calculations reveal the presence of a spiral shock in the accretion disk. The stellar wind blowing from the secondary strongly interacts with the accretion disk, circum-binary envelope, and flow from L2. When radiative cooling is taken into account explicitly, this wind disrupts the accretion disk.  相似文献   

8.
Photometric observations of the variable star ASASSN-13cx acquired in the course of a program of studies of cataclysmic variables and their parameters recently carried out at the Sternberg Astronomical Institute (SAI) are presented. The star was observed with the 50-cm and 60-cm telescopes of the SAI Crimean Astronomical Station and a CCD photometer (~1800 images in the V and Rc filters) during the variable’s outburst of August–September 2014 and in a period of quiescence in October–November 2016. The ASASSN-13cx system is confirmed to be a SU UMa variable. Parameters of the system are derived from eight light curves using a “composite” model that takes into account the presence of a hot spot on the lateral surface of the geometrically thick disk and of a region of enhanced energy release near the disk edge, at the base of the gas flow (the so-called “hot line”). Parameters of the system for three light curves during the outburst were obtained in the framework of a “spiral” model that additionally takes into account the presence of geometric perturbations on the accretion-disk surface. The parameters of ASASSN-13cx determined using these models provide good accuracy in reproducing the system’s light curves in both states. The basic parameters of the system have been determined for the first time: the component mass ratio q = M1/M2 = 7.0 ± 0.2, the orbital inclination i = 79.9°?80.1°, the distance between the components’ centers of mass a0 = 0.821(1) R?, and the sizes and temperatures of the stars: R1 = 0.0124(5)a0 = 0.0102(4) R?, T1 = 12 500 ± 280 K, 〈R2〉 = 0.236(4)a0 = 0.194(3) R?, T2 = 2550 ± 400 K, corresponding to M4–9V for the spectral type of the secondary. Parameters of the accretion disk have been derived for both activity states. The mass of matter in the accretion disk increased by almost a factor of two during ~400 orbital periods in quiescence.  相似文献   

9.
Optical spectra and light curves of the massive X-ray binary V1357 Cyg are analyzed. The calculations were based on models of irradiated plane-parallel stellar atmospheres, taking into account reflection of the X-ray radiation, asphericity of the stellar surface, and deviations from LTE for several ions. Comparison of observed spectra obtained in 2004?C2005 at the Bohyunsan Observatory (South Korea) revealed variations of the depths of HI lines by up to 18% and of HeI and heavy elements lines by up to 10%. These variations are not related to the orbital motion of the star, and are probably due to variations of the stellar wind intensity. Perturbations of the thermal structure of the atmosphere due to irradiation in various states of Cyg X-1 (including outburst) do not lead to the formation of a hot photosphere with an electron temperature exceeding the effective temperature. As a result, variations of the profiles of optical lines of HI, HeI, and heavy elements due to the orbital motion of the star and variations of the irradiating X-ray flux do not exceed 1% of the residual intensities. Allowing for deviations from LTE enhances the HI and HeI lines by factors of two to three and the MgII lines by a factor of nine, and is therefore required for a fully adequate analysis of the observational data. Analysis of the HI, HeI, and HeII lines profiles yielded the following set of parameters for theOstar at the observing epoch: T eff = 30 500±500 K, log g = 3.31±0.05, [He/H] = 0.42 ± 0.05. The observed HeI line profiles have emission components that are formed in the stellar wind and increase with the line intensity. The abundances of 11 elements in the atmospheres of V1357 Cyg and ?? Cam, which has a similar spectral type and luminosity class, are derived. The chemical composition of V1357 Cyg is characterized by a strong excess of helium, nitrogen, neon, and silicon, which is related to the binarity of the system.  相似文献   

10.
We have used 46 high-resolution echelle spectra of the Wolf-Rayet star HD 192163 taken in 2005–2009 at the Cassegrain focus of the 2-m Zeiss-2000 telescope of the Shamakha Astrophysical Observatory to study profiles of the five strongest emission lines (HeII 4859, HeII 5411, CIV 5808, HeI 5875, (HeII + Hα) 6560). We also obtained four echelle spectrograms of the Wolf-Rayet star HD 191765 for a comparative study of the NaI 5890 (D2) and NaI 5896 (D1) interstellar absorption lines. The echelle spectrograms were reduced using the DECH20 code. We determined the equivalent widths, radial velocities, central intensities, and half-widths of the emission lines. We detected variations in the violetwing of the (HeII + Hα) 6560 emission band (between λ ~ 6496 Å and λ ~ 6532 Å). Our statistical analysis of the radial velocities available for the (HeII + Hα) 6560 emission band reveals a peak at the ~1% level at the frequency ν = 0.195 d?1, corresponding to the period P = 5.128d. We also studied the NaI 5890 (D2) and NaI 5896 (D1) interstellar absorption lines, which are important for understanding the nature of the nebula NGC 6888, whose origin is related to HD 192163. Asymmetric profiles were found for the NaI 5890 and NaI 5896 interstellar absorption lines, interpreted as reflecting a contribution from NGC 6888 to these lines. We suggest that the detected profile variations of the (HeII + Hα) 6560 emission band and the periodic variations of its Doppler shifts (P = 5.128d) are due to the existence of a low-mass K-M star companion to the Wolf-Rayet star. HD 192163 is a possible evolutionary progenitor of a low-mass X-ray binary.  相似文献   

11.
We present a “combined” model taking into account visual manifestations of the interaction between the gas flow and the accretion disk in a close binary system in the form of a “hot line” and a “hot spot.” The binary consists of a red dwarf that fills its Roche lobe and a compact spherical star (a white dwarf or neutron star) surrounded with a thick ellipsoidal accretion disk of a complex shape. The disk thickness is not large near the compact star but increases according to a parabolic law towards its outer edge. The oblique collision of the gaseous flow with matter of the cool, rotating disk, whose outer edge has a temperature <10 000 K, creates an extended region of enhanced energy release. In the combined model, this region is represented with a hot line that coincides with the optically opaque part of the flow and is located outside the disk, together with a hot spot at the outer surface of the disk, on the leeward side of the flow. The synthetic light curves for the combinedmodel and a hot-line model demonstrate that both models are able to fairly accurately reproduce the shapes of both classical and atypical light curves of cataclysmic variables in quiescence. Our determination of the parameters of the cataclysmic variable OY Car from an analysis of its light curves using the two models shows that the basic characteristics of the close binary, such as the component mass ratio q = M 1/M 2, orbital inclination i, effective temperatures of the red dwarf (T 2) and white dwarf (T 1), and orientation of the disk α e , remain the same within the errors. The parameters describing the size of the slightly elliptical disk and the radiation flux from the disk differ by several percent (∼ 2–8%). A more significant difference is detected in the parameters of the hot line, due to the different shape and alignment of the flow and the presence of an additional radiation source—the hot spot—on the disk.  相似文献   

12.
Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of Hα. We determined Doppler shifts of the moving emission lines, Hα + and Hα ?, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for Hα ? and 389 for Hα +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for Hα ? and 630 for Hα + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.  相似文献   

13.
We have studied the variability of the Hell λλ 4686 and 5411 Å Hβ, and Hα lines in the spectrum of the pulsating star HD 93521. All these line profiles display the same variability pattern relative to the average profiles: a sinusoidal wave that moves systematically from the short-to the long-wavelength wing of the profile. This variability is due to non-radial pulsations. To study the pulsation movements and stratification of the radial velocity in the atmosphere of HD 93521, we analyzed the variability of the radial velocities measured individually for the blue and red halves of the absorption profile at the half-level of the line intensity. The periods and amplitudes of this radial-velocity variability are different for different lines and are well correlated with their central depths. In the transition from weak to strong lines (i.e., from lower to upper layers of the atmosphere), the period of the radial-velocity variations measured using both halves of the absorption profile increases, while its amplitude decreases. When the morphology and variability of photospheric and wind-driven lines are compared, it is clear that the variability of their absorption components is due to the same process—non-radial pulsations. In this way, the non-radial pulsations partly affect the variability of the stellar wind. The effect of the stellar wind on the profiles of strong lines is observed as a variable absorption feature that moves along the profiles synchronous with the axial rotation of the star.  相似文献   

14.
Based on high-resolution observations (R = 60 000 and 75 000), we have studied the optical spectral variability of the star BD + 48°1220, identified with the IR source IRAS 05040+4820. We have measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths from 4500 Å to 6760 Å, as well as the corresponding radial velocities. We use model atmospheres to determine the effective temperature T eff = 7900 K, surface gravity log g = 0.0, microturbulence velocity ξ t = 6.0, and the abundances for 16 elements. The star’s metallicity differs little from the solar value: [Fe/H] = ?0.10 dex. The main peculiarity of the chemical composition of the star is a large helium excess, derived from the Hel λ 5876 Å absorption, [He/H] = +1.04, and the equally large oxygen excess, [O/Fe] = +0.72 dex. The carbon excess is small, [C/Fe] = +0.09 dex, and the ratio [C/O] < 1. We obtained an altered relation for the light-metal abundances: [Na/Fe] = +0.87 dex with [Mg/Fe] = ?0.31 dex. The barium abundance is low, [Ba/Fe] = ?0.84 dex. It is concluded that the selective separation of elements onto dust grains of the envelope is probably efficient. The radial velocity of the star measured from photospheric absorption lines over three years of observations varies in the interval V = ?(7–15) km/s. Time-variable differential line shifts have been revealed. The entire set of available data (the luminosity M v ≈ ?5 m , velocity V lsr ≈ ?20 km/s, metallicity [Fe/H] = ?0.10, and peculiarities of the optical spectrum and chemical composition) confirms the status of BD + 48°1220 as a post-AGB star with He and O excesses belonging to the Galactic disk.  相似文献   

15.
Spectral monitoring of the yellow hypergiant ρ Cas with the by 6-m telescope of the Special Astrophysical Observatory with a spectral resolution of R ≥ 60 000 has led to the detection of new features in the kinematic state of its extended atmosphere following the ejection of matter in 2013. Significant changes in the profile of the Hα line were detected: the line had a doubled core for the first time in a 2014 spectrum, an inverse P Cygni profile on February 13, 2017, and the profile was again doubled on August 6, 2017 and September 5, 2017, but was strongly shifted toward longer wavelengths, indicating a rapid infall of matter. Splitting of the profiles of strong, low-excitation absorption lines into three components was first detected in 2017. There is no correlation between the evolution of the profiles of Hα and the splitted absorption lines. Pulsation-like variability with an amplitude of about 10 km/s is characteristic only of symmetric weak and moderate-intensity absorption lines. Shell emission lines of iron-group elements can be identified in the long-wavelength part of a spectrum obtained in 2013, whose intensity decreased until they completely disappeared in 2017. In the absence of emission in the cores of the H and K lines of Ca II, emission lines of shell metals are visible in the wings of these lines.  相似文献   

16.
Multi-epoch observations with high spectral resolution acquired in 1998–2008 are used to study the time behavior of the spectral-line profiles and velocity fields in the atmosphere and circumstellar shell of the post-AGB star V448 Lac. Asymmetry of the profiles of the strongest absorption lines with lower-level excitation potentials χ low < 1 eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarities of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0; 1) 5635 Å Swan system band of the C2 molecule has been detected in the spectrum of V448 Lac for the first time. The core of the Hα line displays radial-velocity variations with an amplitude of ΔV r ≈ 8 km/s. Radial-velocity variations displayed by weak metallic lines with lower amplitudes, ΔV r ≈ 1–2 km/s, may be due to atmospheric pulsations. Differential line shifts, ΔV r = 0–8 km/s have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, V exp = 15.2 km/s, as derived from the C2 and NaI lines.  相似文献   

17.
We have calculated profiles of the CIV 1550, NV 1240, OVI 1035, and SiIV 1400 resonance doublets for a plane-parallel shock viewed at various angles. Calculations were performed for the range of preshock gas velocities V0 and gas densities ρ0 appropriate for classical T Tauri stars. The parameters of accretion shocks in young stars can be determined by comparing the calculated and observed profiles of the studied lines and their relative intensities. It is not possible to derive the parameters of the accreting gas from the line profiles without knowing the geometry of the accretion zone. The relation I v (µ,V0,ρ0) for a plane shock, where I v is the intensity μ=cosθ, can be used to determine the accretion parameters by either choosing a geometry for the radiating region or using a technique similar to Doppler tomography. The results obtained for DR Tau, T Tau, and RY Tau indicate that, in contrast to current concepts, the inner regions of the accretion disk are not disrupted by the magnetic field of the star, and the disk reaches the stellar surface. As a result, only a small fraction of the accreted matter passes through the shock and falls onto the star.  相似文献   

18.
R-band photometric light curves of the eruptive eclipsing binary SDSS J090350.73+330036.1 obtained during a superoutburst in May 2010 (JD 2455341-2455347) are analyzed. Observations covering an interval near the outburst maximum and the post-maximum decrease by 0.7 m are presented. Oscillations (superhumps) whose period differs from the orbital period by several percent are observed in the light curve together with eclipses, suggesting that the studied system is a SU UMa dwarf nova. A ??spiral arm?? model is used to fit the light curves and determine the parameters of the accretion disk and other components of the binary system. Together with a hot line, this model takes into account, geometrical inhomogeneities on the surface of the accretion disk, namely, two thickenings at its outer edge that decrease exponentially in the vertical direction with approach toward the white dwarf. The increase in the R-band flux from the system during the superoutburst mainly results from the enhanced luminosity of the accretion disk due to the increase in its radius by up to ??0.44a 0 at the outburst maximum (a 0 is the component separation), as well as a shallower radial temperature decrease law than in the canonical case. As the superoutburst faded, the disk radius decreased smoothly at the end of our observation (to ??0.33a 0), the thickness of its outer edge and temperature of its boundary layer decreased, and the parameter ?? g approached its canonical value. Deviations from the mean brightness of the system as a function of the superhump period P sh are analyzed for each out-of-eclipse set of observations. Various factors affecting the appearance and amplitudes of superhumps in the orbital light curves are considered.  相似文献   

19.
High resolution observations in the region of the Hα, HeII λ 4686, and Hγ lines in the spectrum of the symbiotic binary Z And were performed during a small-amplitude flare at the end of 2002. The profiles of the hydrogen lines were double-peaked, and suggest that the lines may be emitted mainly by an optically thin accretion disk. Since the Hα line is strongly contaminated by emission from the envelope, the Hγ line is used to investigate the properties of the accretion disk. The Hα line has broad wings, believed to be determined mostly by radiation damping, although the high-velocity stellar wind from the compact object in the system may also contribute. The Hγ line has a broad emission component, assumed to be emitted mainly from the inner part of the accretion disk. The HeIIλ 4686 line also has a broad emission component, but is believed to arise in a region of high-velocity stellar wind. The outer radius of the accretion disk can be calculated from the shift between the peaks. Assuming that the orbital inclination can range from 47° to 76°, we estimate the outer radius to be 20–50 R. The behavior of the observed lines can be interpreted in the model proposed for the line spectrum during the first large 2000–2002 flare of this binary.  相似文献   

20.
Our high-resolution spectral observations have revealed variability of the optical spectrum of the cool star identified with the IR source IRAS 20508+2011. We measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths 4300–7930 Å, along with the corresponding radial velocities. Over the four years of our observations, the radial velocity derived from photospheric absorption lines varied in the interval V r⊙ = 15–30 km/s. In the same period, the Hα profile varied from being an intense bell-shaped emission line with a small amount of core absorption to displaying two-peaked emission with a central absorption feature below the continuum level. At all but one epoch, the positions of the metallic photospheric lines were systematically shifted relative to the Hα emission: ΔV r = V r(met) ? V r(Hα, emis) ≈ ?23 km/s. The Na D doublet displayed a complex profile with broad (half-width ≈ 120 km/s) emission and photospheric absorption, as well as an interstellar component. We used model atmospheres to determine the physical parameters and chemical composition of the star’s atmosphere: T eff = 4800 K, log g = 1.5, ξt = 4.0 km/s. The metallicity of the star differs little from the solar value: [Fe/H] = ?0.36. We detected overabundances of oxygen [O/Fe] = +1.79 (with the ratio [C/O] ≈ ?0.9), and α-process elements, as well as a deficit of heavy metals. The entire set of the star’s parameters suggests that the optical component of IRAS 20508+2011 is an “O-rich” AGB star with luminosity M v ≈ ?3m that is close to its evolutionary transition to the post-AGB stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号